Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГМТУ»)

Морской факультет

Кафедра электрооборудования судов и автоматизации производства

УТВЕРЖДАЮ Декан морского факультета

Н.В. Ивановский

21.06

2017 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Планирование конструкторской работы

Уровень основной образовательной программы — бакалавриат Направление подготовки - 13.03.02 Электроэнергетика и электротехника Статус дисциплины — по выбору

Учебный план 2017 года

Описание учебной дисциплины по формам обучения Очная Заочная КП (КР), час./ зач. единиц Зсего час. / зач. единиц Семестровый контроль час. / зач. единиц Семестровый контроль Зсего аудиторных час. Всего аудиторных час час./ зач. единиц Контрольная работа Самост. работа, час. Самост. работа, час. Тракт. занятия, час Семинары, часов Семинары, часов Таб. работы, час. час Лекции, часов Лекции, часов Тракт. занятия, Таб. работы, Семестр Beero 4 Зачет 72/2 18 36 3 3 6 58 3 36 18 зачет (4) Зачет 72/2 36 18 18 36 Всего 72/2 10 58 зачет 3cero (4)TРабочая программа составлена на основании ФГОС ВО, рабочего учебного плана с учетом требований ООП. Черный С.Г., к.т.н., доцент, доцент кафедры Программу разработал ЭСиАП Рассмотрено на заседании кафедры электрооборудования судов и автоматизации производства ФГБОУ ВО «КГМТУ» Протокол № <u>//</u> от ___ *6.05* , 2017 г. Зав. кафедрой _ Согласовано: Начальник УМУ Е.Ю. Девятова © Керченский государственный морской технологический университет

1 Цель и задачи изучения дисциплины

Цель и задачи курса " Планирование конструкторской работы" заключаются в подготовке инженеров-электриков, которые широко владеют сведениями о моделях относительно сложных систем электрооборудования и средств автоматизации и научить студентов применять персональные компьютеры (ПК) для анализа и оптимизации этих систем. Ориентированность дисциплины позволяет осуществить: формирование у студентов системы представлений о особенностях протекания процессов в периферийных устройствах при вводе-выводе информации; практическую организацию процессов ввода-вывода информации при применении различных периферийных устройств; методы анализа, программирования и кодирования вычислительных систем с различными устройствами; тенденции развития современных средств периферии; особенностями проектирования интерфейсов на базе типовых периферийных измерительно-информационных систем.

2 Место дисциплины в структуре ООП

Дисциплина относится к обязательным дисциплинам вариативной части математического и естественнонаучного цикла учебного плана.

Данной дисциплине должны предшествовать следующие дисциплины: "Высшая математика", "Физика", "Информатика".

3 Требования к результатам освоения дисциплины

3.1 Процесс изучения дисциплины направлен на формирование следующих компетенций (в соответствии с ФГОС ВО направления 13.03.02 Электроэнергетика и электротехника):

Общепрофессиональные и профессиональные компетенции

No	Содержание компетенции
компетенции	
(ОПК-1)	способностью осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
(ОПК-3)	способностью использовать методы анализа и моделирования электрических цепей
(ПК-1)	способностью участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике
(ПК-2)	способностью обрабатывать результаты экспериментов
(ПК-3)	способностью принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией, соблюдая различные технические и экологические требования
(ПК-4)	способностью проводить обоснование проектных решений

В результате изучения дисциплины «Планирование конструкторской работы» студенты должны

знать:

- основные средства организации ввода-вывода информации в современных ЭВМ;
- основные классы современных периферийных устройств;
- основные стандартные интерфейсы периферийных устройств;
- перспективы развития периферийных БИС и устройств.

уметь:

- подключать различные периферийные устройства к ЭВМ через стандартные интерфейсы;
- готовить программы управления периферийным оборудованием;
- работать с пакетами прикладных программ.

работы с компьютерными устройствами.

4 Структура учебной дисциплины

	Общее	e -						Распр							
Наименования	коли-	Зачетные еденицы	часов по видам занятий и формам обучения							1					
разделов	чество	нет ену	дневна					ная заочна					ная	я	
и тем	часов	Зачед	Ауд.	лк	ЛР	П3 (сем)	CP	Контроль	Ауд.	лк	ЛР	П3 (сем)	СР	Контролі	
1	2		3	4	5	6	7		8	9	10	11	12		
		Pa	здел	1. П	ери	фери	йнь	не устройс	ства						
Тема 1. Информация и ЭВМ	10	0,3	4	2		2	6		0,5	0,5			8		
Тема 2. Унифицированные интерфейсы ПК и их основные параметры.	12	0,3	6	3		3	6		1,5	0,5		1	10		
Тема 3. Устройства ввода и вывода информации	14	0,4	8	4		4	6		2	1		1	10		
	Раздел	2. Эле	емент	ып	ooei	стироі	зани	я компью	гернь	IX ÇI	исте	М			
Тема I. Устройства двустороннего обмена информацией.	11	0,3	5	3		2	6		1,5	0,5		1	10		
Тема 2. Математические модели для решения в пакете Matlab	14	0,4	8	3		5	6		4	1		3	10		
Тема 3. Наблюдатели состояния.	11	0,3	5	3		2	6		0,5	0,5			10		
Форма контроля - зачет			36	18		18	36		10	4		6	58	4	
Всего часов по дисциплине	72	2	36	18		18	36		10	4		6	58	4	

5 Содержание лекций

N₂	Наименование темы	Количество часон по формам обучения		
		очная	заочная	
	Раздел 1. Периферийные устройства			
1	Введение. Входной контроль. Структура и состав вычислительного комплекса. Представление информации в ЭВМ. Цифровые и аналоговые сигналы. Двоичное кодирование. Выбор системы счисления. Методы цифрового кодирования. Машинное слово. Кодирования алфавитно-цифровой информации.	2	0,5	
2	Классификация интерфейсов способа передачи информации. Особенности организации последовательных и параллельных интерфейсов. Классификация интерфейсов по способу подключения устройств. Особенности реализации радиальных, магистральных и цепных интерфейсов. Организация и классификация линий интерфейсов. Особенности физической реализации. Особенности обмена	3	0,5	

	данными в ЭВМ с объединенным интерфейсом. Системная шина. Шины расширений. Локальные шины. Шина РСІ.		
3	Клавиатуры. Устройства позиционирования курсора: Манипуляторы типа мышь. Трекболы. Сенсорные панели. Джойстики. Графические планшеты. Устройства автоматизированного ввода графической информации и видеоизображений: Сканеры. Web-камеры. Сканеры штрих-кодов. Печатающие устройства и их классификация (основные характеристики). Струйный способ печати. Термографический печать. Назначение, классификация и основные характеристики устройств отображения информации.	4	1
Разд	ел 2. Элементы проектирования компьютерных систем		
5	Дисковые накопители. Логическая структура диска. Накопители на гибких магнитных дисках. Накопители на жестких магнитных дисках. Интерфейсы НЖМД. Накопители с интерфейсом ATA (IDE) и SCSI. Оптические накопители. Магнитооптические накопители. Накопители на магнитной ленте. Полупроводниковые устройства ввода-вывода. Модемы. Классификация, конструкция, принцип действия. Режимы работы модемов. Протоколы коррекции ошибок и сжатия данных. Протоколы передачи файлов. Установка и использование модемов.	3	0,5
6	Задача анализа процессов. Процессы минимальной длительности. Paбота с Matlab	3	1
7	Наблюдаемость линейных импульсных систем. Модальный метод синтеза. Операторная процедура. Матричная процедура модального метода синтеза. Синтез одноканальных астатических систем с использованием матричной процедуры.	3	0,5
		18	4

6 Темы лабораторных занятий

Проведение лабораторных занятий не предусмотрено учебным планом.

7 Темы практических занятий

No	Наименование темы	Количество часов по формам обучения			
		дневная	заочная		
1	Организация прерываний при выводе информации на порты	3			
2	Организация прерываний при выводе чисел на индикаторы	2	1		
3	Изучение системы прерываний, работа с портами и симуляция работы с клавиатурой.	4	1		
4	Изменение кода отображенного на индикаторе при нажатии клавиш.	4	1		
5	Работа с пакетом Matlab	5	3		
	Всего	18	6		

8 Темы семинарских занятий

Проведение семинарских занятий не предусмотрено учебным планом.

9 Содержание и объем самостоятельной работы студента

Самостоятельная работа студентов делится на базовую и дополнительную.

Базовая самостоятельная работа (БСР) обеспечивает подготовку студента к текущим аудиторным занятиям и контрольным мероприятиям для всех дисциплин учебного плана. Результаты этой подготовки проявляются в активности студента на занятиях и в качестве выполненных контрольных работ, тестовых заданий, сделанных докладов и других форм текущего контроля.

Базовая СР может включать следующие виды работ:

- работа с лекционным материалом, предусматривающая проработку конспекта лекций и учебной литературы;
- поиск (подбор) и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- выполнение домашнего задания или домашней контрольной работы, предусматривающих решение задач, выполнение упражнений и выдаваемых на практических занятиях;
 - изучение материала, вынесенного на самостоятельную проработку;
 - практикум по учебной дисциплине с использованием программного обеспечения;
 - подготовка к лабораторным работам, практическим и семинарским занятиям;
 - подготовка к контрольной работе;
 - подготовка к зачету и аттестациям;
 - написание реферата (доклада, научной статьи) по заданной проблеме.

Дополнительная самостоятельная работа (**ДСР**) направлена на углубление и закрепление знаний студента, развитие аналитических навыков по проблематике учебной дисциплины.

ДСР может включать следующие виды работ:

- подготовка к зачету;
- выполнение расчетно-графической работы;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
 - анализ научной публикации по заранее определённой преподавателем теме;
- анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

Студент, приступающий к изучению учебной дисциплины, получает информацию обо всех видах самостоятельной работы по курсу с выделением базовой самостоятельной работы (БСР) и дополнительной самостоятельной работы (ДСР), в том числе по выбору.

Раздел	самосто	емкость ятельной ы, час.	Литература	Содержание работы	
	очная	заочная			
Раздел 1. Периферийные устройства					
Шины ISA и MCA. Шина IEEE 1394-FireWire. Стандарт IEEE 1284 Интерфейс I2C. Интерфейс ITAG. Модификации шины SCSI.	9	10	[1] c. 5-22	Закрепление материала лекций. самостоятельная	
Сенсорные дисплеи. Нетрадиционные методы записисчитывания информации. Современные модемы и их характеристики. Протоколы коррекции ошибок и сжатия данных. Протоколы передачи файлов.	9	18	[7] c. 82- 254	проработка материала, оформление презентаций м докладов	
Раздел 2. Элементы проектирования компьютерных систо	ем				
Кодирование источника с заданным критерием качества. Свойства функции скорость-искажение. Обратная теорема кодирования для дискретного постоянного источника при заданном критерии качества.	9	15	[3] c. 224- 252	Закрепление материала лекций самостоятельная проработка материала, оформление презентаций м докладов	
Программное обеспечение информационных транспортных технологий. Требования к управляющим алгоритмам и программ. Ошибки программного обеспечения. Методы повышения надежности.	9	15	[6] c. 33-79 [7] c. 491- 534		
Всего	36	58			

10 Индивидуальные задания

С целью реализации компетенций студентами и развития научной деятельности студентам предложено выполнение исследовательских работ по тематике лекционных и практических занятий.

11 Методы обучения

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие методы образовательных технологий:

работа в команде - совместная деятельность группы студентов с индивидуальной работой членов команды под руководством лидера;

опережающая самостоятельная работа - самостоятельное освоение студентами нового материала до его изложения преподавателем во время аудиторных занятий;

методы IT - использование Internet-ресурсов для расширения информационного поля и получения информации, в том числе и профессиональной;

междисциплинарное обучение - обучение с использованием знаний из различных областей (дисциплин) реализуемых в контексте конкретной задачи;

проблемное обучение - стимулирование студентов к самостоятельному приобретению знаний для решения конкретной поставленной задачи;

обучение на основе опыта - активизация познавательной деятельности студента за счет ассоциации их собственного опыта с предметом изучения;

исследовательский метод - познавательная деятельность, направленная на приобретение новых теоретических и фактических знаний за счет исследовательской деятельности, проводимой самостоятельной или под руководством преподавателя.

В соответствии с «Положением об организации учебного процесса в высших учебных заведениях» основными формами изучения дисциплины являются: чтение лекций, проведение практических работ, самостоятельная и научная работа студентов.

Основным методом изучения дисциплины являются лекции, которые проводятся в лекционных аудиториях с использованием наглядных пособий и специального оборудования.

Выполнение и защита всех предусмотренных программой лабораторных работ является обязательным условием аттестации студента.

Защита заданий, выдаваемых преподавателем на занятиях, производится в часы, отведенные по расписанию.

Занятия	Используемые интерактивные
	образовательные технологии
Лекции	Проблемная лекция, лекция-визуализация, лекция с обратной связью, использование технических средств обучения (презентации, видеофильмы и т.д.) с дальнейшим обсуждением и т.д.
Лабораторные занятия	Работа в малых группах, моделирование производственных процессов и ситуаций, тренинги.
Практические занятия	Работа в малых группах, моделирование производственных процессов и ситуаций, тренинги.
Самостоятельная работа	Основная возможность применения интерактивных методов при самостоятельной работе заключается в организации групповой работы студентов. Стимулирование тесного общения учащихся друг с другом приводит к формированию навыков социального поведения, освоению технологии совместной работы. При этом консультирование между студентами и преподавателем в ходе разработки программы может осуществляться как непосредственно в аудиторное время, так и с использованием off-line и on-line технологий.

12 Методическое обеспечение, учебная и рекомендуемая литература

- 1. Молчанов А.Ю. Системное программное обеспечение Учебник для вузов. 3-е изд. СПБ.: Питер, 2010. – 400 с.
- 2. Избачков Ю.С., Петров В.Н., Васильев А.А., Телина И.С. Информационные системы: Учебник для вузов. 3-е изд. – СПБ.: Питер, 2011. – 544 с.
- 3. Кудряшов Б.Д. Теория информации: Учебник для вузов. СПб: Питер, 2009. 320 с.

- 4. Орлов С.А., Цилькер Б.Я. Технология разработки программного обеспечения. Учебник для вузов. 4-е изд. СПБ.: Питер, 2011. 608 с.
- 5. Голиков С.П., Черный С.Г., Ивановский Н.В. Судовые компьютерные сети. Кондор, 2014. 237 с.
- 6. Белый О.В., Сазонов А.Е. Информационные системы технических средств транспорта. СПб: Элмор, 2011. 192 с.
- 7. Бройдо В.Л., Ильина О.П. Вычислительные системы, сети и телекоммуникации. СПб: Питер, 2011. 560 с.
- 8. Богодухов, С.И. Основы проектирования заготовок в автоматизированном машиностроении: учебник. [Электронный ресурс] : учебное пособие / С.И. Богодухов, А.Г. Схиртладзе, Р.М. Сулейманов [и др.]. Электрон. дан. М. : Машиностроение, 2009. 432 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=749 Загл. с экрана.
- 9. Юзова, В.А. Основы проектирования электронных средств. Конструирование электронных модулей первого структурного уровня: лабораторный практикум [Электронный ресурс]: учебное пособие. Электрон. дан. Красноярск: СФУ, 2012. 206 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=6043 Загл. с экрана.
- 10. Барбашов, Н.Н. Основы проектирования машин по динамическим и экономическим показателям [Электронный ресурс] : учебное пособие / Н.Н. Барбашов, Д.И. Леонов, И.В. Леонов. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2011. 80 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=52216 Загл. с экрана.
- 11. Марков, А.В. Основы проектирования измерительных приборов: учебное пособие для вузов [Электронный ресурс] : учебное пособие. Электрон. дан. СПб. : БГТУ "Военмех" им. Д.Ф. Устинова (Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова), 2014. 56 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=63692 Загл. с экрана.

13 Информационные ресурсы

Электронная библиотека КГМТУ: http://kgmtu.edu.ua/jspui/handle/123456789/419. Полезные сайты:

- 1. ixbt.stack.net энциклопедия аппаратного обеспечения
- 2. www.kv.minsk.by аппаратные средства ПК
- 3. www.the-view.com обзор аппаратных средств
- 4. www.tweakit.com обзор и сравнение новых аппаратных средств
- 5. www.pcquide.com общая информация об аппаратных средствах ПК
- 6. www.sig.net/-slog'an/hardware.htm обзор аппаратных средств
- 7. hardware.pairnet.com обзор аппаратных средств
- 8. web.idirect.com/~trank/index.html характеристики HDD и CD-ROM
- 9. www.drivershq.com обзор драйверов аппаратных средств
- 10. www.mrdriver.com обзор драйверов аппаратных средств для различных систем
- 11. www.symbios.com/x3t10 информация об устройствах ввода / вывода
- 12. www.windrivers.com драйверы аппаратных устройств

14 Материально-техническое обеспечение дисциплины

Чтение лекций по дисциплине производится в ауд. 209, которая оборудована мультимедийным проектором, укомплектована плакатами и демонстрационными материалами. Практические работы проводятся в ауд. 206 с использованием периферийного обеспечения.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Морской факультет Кафедра электрооборудования судов и автоматизации производства

УТВЕРЖДАЮ

Зав. кафедрой ЭСиАП

_ С.Г. Черный

5 » OF 2017 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ ПЛАНИРОВАНИЕ КОНСТРУКТОРСКОЙ РАБОТЫ

Направление подготовки – 13.03.02 «Электроэнергетика и электротехника»

Рекомендовано заседанием кафедры электро Протокол № от 6.05. 2017 г. Заведующий кафедрой ЭСиАП «.5.»	ооборудования судов и автоматизации производства, С.Г. Черный 2017 г.
Фонд оценочных средств разработали преподаватель кафедры ЭСиАП	С.Г. Черный « 8 » ОВ 2017 г.

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Положение о фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации и контроля остаточных знаний студентов (курсантов) (далее Положение) устанавливает правила разработки, требования к структуре, содержанию и оформлению, а также процедуру утверждения фондов оценочных средств (далее ФОС) для аттестации обучающихся на соответствие их персональных достижений поэтапным требованиям соответствующей основной образовательной программы (ООП) высшего образования, реализуемой в федеральном государственном бюджетном образовательном учреждении высшего образования «Керченский государственный морской технологический университет» (далее ФГБОУ ВО «КГМТУ» или университет).
- 1.2 ФОС по дисциплине является неотъемлемой частью нормативно-методического обеспечения системы оценки результата освоения курсантами ООП.
- 1.3 ФОС по дисциплине представляет собой совокупность контрольно-измерительных материалов (КИМ) (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения курсантом установленных результатов обучения.
- 1.4 ФОС по дисциплине используется при проведении текущего контроля успеваемости, промежуточной аттестации курсантов и контроля остаточных знаний у курсантов, а также при переводе и восстановлении курсантов.
 - 1.5 ФОС входит в состав учебно-методического комплекса дисциплины (далее УМКД).

2 ЦЕЛЬ И ЗАДАЧИ СОЗДАНИЯ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

- 2.1 Целью создания ФОС учебной дисциплины является создание инструмента, позволяющего установить соответствие уровня подготовки курсанта на данном этапе обучения требованиям ФГОС ВПО, соответствующей специальности.
 - 2.2 Задачи ФОС по дисциплине:
- контроль процесса освоения курсантами уровня сформированности компетенций, определенных в ФГОС ВПО, соответствующей специальности;
- контроль и управление достижением выпускниками целей реализации ООП, определенных в виде набора соответствующих компетенций;
- оценка достижений курсантов в процессе изучения дисциплины с выделением положительных (отрицательных) результатов и планирование предупреждающих, корректирующих мероприятий.
- 2.3 Оценочные средства, сопровождающие реализацию ООП, должны быть разработаны для проверки качества формирования компетенций и являться действенным средством не только оценки, но и обучения курсантов.

3 ПАСПОРТ

ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ПЛАНИРОВАНИЕ КОНСТРУКТОРСКОЙ РАБОТЫ

3.1 Модели контролируемых компетенций: Компетенции формируемые в процессе изучения дисциплины

No	Содержание компетенции
компетенции	
(ОПК-1)	способностью осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
(ОПК-3)	способностью использовать методы анализа и моделирования электрических цепей
(ПК-1)	способностью участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике

(ПК-2)	способностью обрабатывать результаты экспериментов
(ПК-3)	способностью принимать участие в проектировании объектов
	профессиональной деятельности в соответствии с техническим заданием и
	нормативно-технической документацией, соблюдая различные технические и
	экологические требования
(ПК-4)	способностью проводить обоснование проектных решений

3.2 В результате изучения дисциплины

«Планирование конструкторской работы» обучающийся должен:

знать:

- основные средства организации ввода-вывода информации в современных ЭВМ;
- основные классы современных периферийных устройств;
- основные стандартные интерфейсы периферийных устройств;
- перспективы развития периферийных БИС и устройств.

уметь:

- подключать различные периферийные устройства к ЭВМ через стандартные интерфейсы;
- готовить программы управления периферийным оборудованием;
- работать с пакетами прикладных программ.

владеть навыками:

- работы с компьютерными устройствами.

4 Программа оценивания контролируемой компетенции:

No	Контролируемые разделы	Код контро-		На	имен	эвани	е оценс	чного	
	(темы)	лируемой				средс	тва*		
	дисциплины	компетенции	УО	C3	T	УИ	Зач.	Экз.	КП
		(или ее части)							
1	Раздел 1. Периферийные	ОПК-1, ОПК-3,	+	+			+		
	устройства.	ПК-1, ПК-2							
2	Раздел 2. Элементы	ОПК-1, ОПК-3, ПК-	+	+			+		
	проектирования	3,ПК-4							
	компьютерных систем								

(*)-наименование оценочного средства:

УО-устный опрос:

С3-ситуационное задание:

Т-тестирование:

УИ-учебное исследование:

Экз-Экзамен:

Зач-Зачет:

КП-Курсовой проект:

6. Перечень вопросов, выносимых на семестровый контроль

Зачёт с оценкой

- 1. Представление информации в ЭВМ. Дискретизации аналоговых сигналов.
- 2. Совмещение процессов обработки и ввода-вывода информации. Система прерываний вычислительного процесса.
 - 3. Классификация периферийных устройств.
 - 4. Основные принципы взаимодействия с ЭВМ.
 - 5. Каналы ввода-вывода назначение, основные функции.
 - 6. Классификация интерфейсов по способу подключения устройств.
- 7. Классификация интерфейсов способа передачи информации. Преобразования информации с помощью регистров PISO и SIPO.
 - 8. Программное управление портами ввода-вывода компьютера.

- 9. Основные характеристики шины РСІ.
- 10. Основные характеристики шины PCI-Express.
- 11. AGP. Основные особенности.
- 12. Передача данных с помощью интерфейса Centronics.
- 13. Реализации и основные характеристики последовательного порта RS-232C.
- 14. Функционирования игрового порта ПК.
- 15. Универсальная последовательная шина USB.
- 16. Шина IEEE1394-FireWire, основные характеристики и применение.
- 17. Интерфейс SCSI, основные характеристики и применение.
- 18. Принтеры. Классификация, основные параметры.
- 19. Дисплеи. Классификация, конструкции и параметры.
- 20. Физическая и логическая структуры магнитного диска.
- 21. Память на жестких магнитных дисках.
- 22. Интерфейсы ATA (IDE) и SATA.
- 23. Управляемость линейных импульсных систем.
- 24. Наблюдаемость линейных импульсных систем.
- 25. Модальный метод синтеза.
- 26. Операторная процедура.
- 27. Матричная процедура модального метода синтеза.
- 28. Синтез одноканальных астатических систем с использованием матричной процедуры.
- 29. Матричные наблюдатели состояния (многоканальные).
- 30. Синтез матричных наблюдателей для одноканальных объектов.
- 31. Переход от одного базиса к другому.
- 32. Наблюдатели пониженного порядка.
- 33. Особенности динамики систем с наблюдателями
- 34. ПИД регуляторы (пропорциональный интегральный дифференцирующий).

7 Критерии формирования оценок по каждому оценочному средству

Изучение дисциплины «Основы научно-исследовательской работы» сопровождается текущим и промежуточным контролем в соответствие с программой оценивания контролируемых компетенций (раздел 4).

Текущий контроль включает следующие формы оценивания знаний курсантов: устный опрос (УО), ситуационное задание (СЗ), тестирование (Т), учебное исследование (УИ).

Устный опрос проводится на занятиях по завершению изучения очередного раздела рабочей программы дисциплины.

Ситуационное задание выполняется на практических занятиях и самостоятельно, которое предусматривает выполнение курсантом индивидуального задания.

Зачёт принимается в соответствии с компетенциями ВО при условии выполнения графика учебного процесса:

- защита всех тем на практических занятиях (пропущенные темы защищаются отдельно);
- решение задач на всех практических занятиях (пропущенные задачи защищаются отдельно).

Ситуационная задача включает необходимость выполнения расчетов и представление результатов решения в виде количественных показателей. Эта составляющая позволяет сочетать обучение с исследовательским процессом.

Перед началом выполнения расчетного задания группа курсантов делится на подгруппы. Все курсанты выполняют расчеты по одной методике. Каждый курсант подгруппы выполняет расчет с различными исходными данными одного параметра. Другая подгруппа - с различными исходными данными другого параметра и т. д. По завершению расчетов результаты представляются в виде таблиц или графиков зависимости характеристик исследуемого объекта от изменяемых параметров. Проводится анализ полученных зависимостей.

Итоговый контроль включает Зачёт.

Зачёт принимается в соответствии с компетенциями ВО при условии выполнения графика учебного процесса:

- защита всех тем на практических занятиях (пропущенные темы защищаются отдельно);

- решение задач на всех практических занятиях (пропущенные задачи защищаются отдельно).

Шкала оценивания знаний

Форма семестрового контроля	Шкала оценивания
Зачёт	Зачёт
	Не зачёт

8 Учебно-методическое обеспечение дисциплины

- 1. Основы научно- Молчанов А.Ю. Системное программное обеспечение Учебник для вузов. 3-е изд. СПБ.: Питер, 2010. 400 с.
- 2. Избачков Ю.С., Петров В.Н., Васильев А.А., Телина И.С. Информационные системы: Учебник для вузов. 3-е изд. СПБ.: Питер, 2011. 544 с.
- 3. Кудряшов Б.Д. Теория информации: Учебник для вузов. СПб: Питер, 2009. 320 с.
- 4. Орлов С.А., Цилькер Б.Я. Технология разработки программного обеспечения. Учебник для вузов. 4-е изд. СПБ.: Питер, 2011. 608 с.
- 5. Голиков С.П., Черный С.Г., Ивановский Н.В. Судовые компьютерные сети. Кондор, 2014. 237 с.
- 6. Белый О.В., Сазонов А.Е. Информационные системы технических средств транспорта. СПб: Элмор, 2011. 192 с.
- 7. Бройдо В.Л., Ильина О.П. Вычислительные системы, сети и телекоммуникации. СПб: Питер, 2011. 560 с.
- 8. Богодухов, С.И. Основы проектирования заготовок в автоматизированном машиностроении: учебник. [Электронный ресурс] : учебное пособие / С.И. Богодухов, А.Г. Схиртладзе, Р.М. Сулейманов [и др.]. Электрон. дан. М. : Машиностроение, 2009. 432 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=749 Загл. с экрана.
- 9. Юзова, В.А. Основы проектирования электронных средств. Конструирование электронных модулей первого структурного уровня: лабораторный практикум [Электронный ресурс]: учебное пособие. Электрон. дан. Красноярск: СФУ, 2012. 206 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=6043 Загл. с экрана.
- 10. Барбашов, Н.Н. Основы проектирования машин по динамическим и экономическим показателям [Электронный ресурс] : учебное пособие / Н.Н. Барбашов, Д.И. Леонов, И.В. Леонов. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2011. 80 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=52216 Загл. с экрана.
- 11. Марков, А.В. Основы проектирования измерительных приборов: учебное пособие для вузов [Электронный ресурс]: учебное пособие. Электрон. дан. СПб.: БГТУ "Военмех" им. Д.Ф. Устинова (Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова), 2014. 56 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=63692 Загл. с экрана.

15 Информационные ресурсы

Электронная библиотека КГМТУ: http://kgmtu.edu.ua/ispui/handle/123456789/419.

Полезные сайты:

Бесплатные программы для судовых электромехаников (Тесты, справочники): http://jobmarine.ru/kms_downloads+index+action-pod+cat-1+ids-3.html

Клуб судовых механиков: http://mec.novomor.com/automatic.htm

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь курсантам и специалистам: http://www.electroengineer.ru/

Морской форум «Мореход»: http://www.morehod.ru/forum/eletromehanika/ Библиотека морской литературы: http://www.sealib.com.ua/electrition.html, Новороссийский Морской Сайт: http://mga-nvr.ru/kursantam/esesa/page/2/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра электрооборудования судов и автоматизации производства

Черный С.Г.

ПЛАНИРОВАНИЕ КОНСТРУКТОРСКОЙ РАБОТЫ

Методические указания для обучающихся по освоению дисциплины (приложение 2 к рабочей программе дисциплины) для курсантов направления подготовки 13.03.02 - «Электроэнергетика и электротехника» очной и заочной форм обучения

Керчь, 2017 г.

УДК 62-83-52 (075.8) Составитель: Черный С.Г., доцент кафедры ЭСиАП ФГБОУ ВО «КГМТУ»
Рецензент: Доровской В.А., докт. техн. наук, профессор кафедры ЭСиАП ФГБОУ ВО «КГМТУ
Методические указания рассмотрены и одобрены на заседании кафедры электрооборудования судов и автоматизации производства, протокол № // от 5 0 2017 г. Заведующий кафедрой ЭСиАП С.Г. Черный

Методические указания утверждены и рекомендованы к публикации на заседании методической комиссии МФ ФГБОУ ВО «КГМТУ» протокол № ___ от ____ 2017 г

© ФГБОУ ВО «КГМТУ», 2017 г.

СОДЕРЖАНИЕ

1 Общие сведения о дисциплине	3
1.1 Цели и задачи дисциплины	3
1.2 Перечень компетенций, формируемых в процессе изучения	
дисциплины	3
1.3 Тематический план дисциплины, распределение трудоемкости	
по видам аудиторных занятий и самостоятельной работы	5
2 Общие рекомендации к аудиторным занятиям и самостоятельной	
работе	6
3 Подготовка к промежуточной аттестации по дисциплине	10
4 Учебно-методическое обеспечение дисциплины	10

1.1 Цель и задачи изучения дисциплины

Цель и задачи курса "Планирование конструкторской работы»" заключаются в подготовке инженеров-электромехаников к научно-исследовательской и организационно-управленческой деятельности, связанной с проведением научных исследований; формулировкой задачи; организацией и проведением исследований, включая организацию работы научного коллектива; оформление результатов исследований; оценкой эффективности разработанных предложений и их внедрение.

1.2 Перечень компетенций, формируемых в процессе изучения дисциплины

Изучение дисциплины направлено на формирование следующих компетенций, предусмотренных ФГОС ВО:

Общепрофессиональные и профессиональные компетенции

No	Содержание компетенции
компетенции	
(ОПК-1)	способностью осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
(ОПК-3)	способностью использовать методы анализа и моделирования электрических цепей
(ПК-1)	способностью участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике
(ПК-2)	способностью обрабатывать результаты экспериментов
(ПК-3)	способностью принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией, соблюдая различные технические и экологические требования
(ПК-4)	способностью проводить обоснование проектных решений

В результате изучения дисциплины «Планирование конструкторской работы» студенты должны

знать:

- основные средства организации ввода-вывода информации в современных ЭВМ;
- основные классы современных периферийных устройств;
- основные стандартные интерфейсы периферийных устройств;
- перспективы развития периферийных БИС и устройств.

уметь:

- подключать различные периферийные устройства к ЭВМ через стандартные интерфейсы;
- готовить программы управления периферийным оборудованием;
- работать с пакетами прикладных программ.

владеть навыками:

работы с компьютерными устройствами.

1.3 Тематический план дисциплины, распределение трудоемкости по видам аудиторных занятий и самостоятельной работы

наименования разделов и тем 1 Тема 1. Информация и ЭВМ Тема 2. Унифицированные	бицее соли- ество насов 2 10	Зачетные 6.0	Ауд. 3 3дел 4	4	ЛР 5	цневна ПЗ (сем) 6	ая СР	идам занят Контроль		лк	ЛР	заочн ПЗ (сем)	СР	Контроль
и тем 1 Тема 1. Информация и ЭВМ Тема 2. Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода	2 10	Pa	3 здел	4 1. Π	ЛР 5	ПЗ (сем) 6	CP	Контроль				ПЗ	СР	Контроль
Тема 1. Информация и ЭВМ Тема 2. Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода	10	Pa	3 здел	4 1. Π	5	(сем) 6	7	Контроль					CP	Контроли
Тема 1. Информация и ЭВМ Тема 2. Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода	10		здел	1. П					0	-				
Информация и ЭВМ Тема 2. Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода					ери	фери			ð	9	10	11	12	
Информация и ЭВМ Тема 2. Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода		0,3	4	2			йнь	іе устройс	тва				, ,	
Унифицированные интерфейсы ПК и их основные параметры. Тема 3. Устройства ввода и вывода	12					2	6		0,5	0,5			8	
Устройства ввода и вывода		0,3	6	3		3	6		1,5	0,5		1	10	
	14	0,4	8	4		4	6		2	1		1	10	
Pa	аздел	2. Эле	емент	ып	роен	стиро	вани	я компью	тернь	IX CI	исте	М		
Тема I. Устройства двустороннего обмена информацией.	11	0,3	5	3		2	6		1,5	0,5		1	10	
Тема 2. Математические модели для решения в пакете Matlab	14	0,4	8	3		5	6		4	1		3	10	
Тема 3. Наблюдатели состояния.	11	0,3	5	3		2	6		0,5	0,5			10	
Форма контроля - зачет			36	18		18	36		10	4		6	58	4
Всего часов по дисциплине	72	2	36	18		18	36		10	4		6	58	4

2 Общие рекомендации к аудиторным занятиям и самостоятельной работе

Обучение по дисциплинам учебного плана любого направления подготовки предполагает изучение курса на аудиторных занятиях (лекции, практические) и самостоятельной работы студентов.

С целью обеспечения успешного обучения студент должен готовиться к лекции, поскольку она является важнейшей формой организации учебного процесса и выполняет следующие функции:

- знакомит с новым учебным материалом;
- разъясняет учебные элементы, трудные для понимания;
- систематизирует учебный материал;
- ориентирует в учебном процессе.

Подготовка к лекции заключается в следующем:

- внимательно прочитайте материал предыдущей лекции;
- узнайте тему предстоящей лекции (по тематическому плану, по информации лектора);
- ознакомьтесь с учебным материалом по учебнику и учебным пособиям;
- постарайтесь уяснить место изучаемой темы в своей профессиональной подготовке;
- запишите возможные вопросы, которые вы зададите лектору на лекции. Подготовка к практическим занятиям работам:
 - внимательно прочитайте материал лекций относящихся к данному практическому (лабораторному) занятию, ознакомьтесь с учебным материалом по учебнику и учебным пособиям;
 - выпишите основные термины;
 - ответьте на контрольные вопросы по теме занятия, готовьтесь дать развернутый ответ на каждый из вопросов;
 - уясните, какие учебные элементы остались для вас неясными и постарайтесь получить на них ответ заранее (до практического занятия) во время текущих консультаций преподавателя;
 - готовиться можно индивидуально, парами или в составе малой группы, последние являются эффективными формами работы;
 - рабочая программа дисциплины в части целей, перечню знаний, умений, терминов и учебных вопросов может быть использована вами в качестве ориентира в организации обучения

Целью самостоятельной работы студентов является:

- научить студента осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы привить умение в дальнейшем непрерывно повышать свою квалификацию.
- закрепление, расширение и углубление знаний, умений и навыков, полученных студентами на аудиторных занятиях под руководством преподавателей;
- изучение студентами дополнительных материалов по изучаемым дисциплинам и умение выбирать необходимый материал из различных источников;
- воспитание у студентов самостоятельности, организованности, самодисциплины, творческой активности, потребности развития познавательных способностей и упорства в достижении поставленных целей.

Предлагаемый подход к освоению материала усиливает мотивацию к аудиторной и внеаудиторной активности, что обеспечивает необходимый уровень знаний по изучаемым дисциплинам и позволяет повысить готовность студентов к сдаче экзаменов.

Основная задача организации самостоятельной работы студентов заключается в создании психолого-дидактических условий развития интеллектуальной инициативы и мышления на занятиях любой формы.

Формы самостоятельной работы студентов разнообразны. Они включают в себя:

- изучение и систематизацию официальных государственных документов
 законов, постановлений, указов, нормативно-инструкционных и справочных материалов с использованием информационно-поисковых систем "Консультант-плюс", "Гарант", компьютерной сети "Интернет";
- изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
- подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
- участие в работе студенческих конференций, комплексных научных исследованиях.

Самостоятельная работа приобщает студентов к научному творчеству, поиску и решению актуальных современных проблем.

На интенсивность самостоятельной работы оказывает влияние содержание образовательных программ, разработанных в соответствии с требованиями ФГОС по каждой специальности.

Самостоятельная работа включает следующие виды деятельности:

- проработку лекционного материала;
- изучение по учебникам программного материала, не изложенного на лекциях;
- подготовку к практическим занятиям,;
- подготовку докладов, статей, рефератов;
- выполнение учебных заданий кафедр (расчетные и расчетнографические работы, презентаций);
- выполнение курсовых работ и проектов;
- рецензирование/оппонирование тезисов/статей;
- и др.

Самостоятельная работа реализуется:

- 1. Непосредственно в процессе аудиторных занятий на лекциях, практических и семинарских занятиях, при выполнении лабораторных работ.
- 2. В контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- 3. В библиотеке, дома, в общежитии, на кафедре при выполнении студентом учебных и творческих задач.

Приступая к изучению новой учебной дисциплины, студенты должны ознакомиться с учебной программой, учебной, научной и методической литературой, имеющейся в библиотеке, получить в библиотеке рекомендованные учебники и учебно-методические пособия, завести новую тетрадь для конспектирования лекций и работы с первоисточниками.

В учебном процессе выделяют два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Содержание внеаудиторной самостоятельной определяется в соответствии с рекомендуемыми видами заданий согласно примерной и рабочей программ учебной дисциплины.

Видами заданий для внеаудиторной самостоятельной работы являются:

- для овладения знаниями: чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и Интернета и др.
- для закрепления и систематизации знаний: работа с конспектом лекции, обработка текста, повторная работа над учебным материалом (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей, составление плана, составление таблиц для систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др), подготовка мультимедиа сообщений/докладов к выступлению на семинаре (конференции), подготовка реферата, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: решение задач и упражнений по образцу, решение вариативных задач, выполнение чертежей, схем, выполнение расчетов (графических работ), решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, опытно экспериментальная работа, рефлексивный анализ профессиональных умений с использованием аудио- и видеотехники и др.

3 Подготовка к промежуточной аттестации по дисциплине

К экзамену (зачету) необходимо готовится целенаправленно, регулярно, систематически и с первых дней обучения по данной дисциплине. Попытки освоить дисциплину в период зачётно-экзаменационной сессии, как правило, показывают не слишком удовлетворительные результаты. В самом начале учебного курса познакомьтесь со следующей учебно-методической документацией:

- программой дисциплины;
- перечнем знаний и умений, которыми студент должен владеть;
- тематическими планами лекций, семинарских занятий;
- контрольными мероприятиями;
- учебником, учебными пособиями по дисциплине, а также электронными ресурсами;
- перечнем экзаменационных вопросов.

После этого у вас должно сформироваться четкое представление об объеме и характере знаний и умений, которыми надо будет овладеть по дисциплине. Систематическое выполнение учебной работы на лекциях и семинарских занятиях

позволит успешно освоить дисциплину и создать хорошую базу для сдачи экзамена (зачета).

4 Учебно-методическое обеспечение дисциплины Основная литература:

- 1. Основы научно- Молчанов А.Ю. Системное программное обеспечение Учебник для вузов. 3-е изд. СПБ.: Питер, 2010. 400 с.
- 2. Избачков Ю.С., Петров В.Н., Васильев А.А., Телина И.С. Информационные системы: Учебник для вузов. 3-е изд. СПБ.: Питер, 2011. 544 с.
- 3. Кудряшов Б.Д. Теория информации: Учебник для вузов. СПб: Питер, 2009. 320 с.
- 4. Орлов С.А., Цилькер Б.Я. Технология разработки программного обеспечения. Учебник для вузов. 4-е изд. СПБ.: Питер, 2011. 608 с.
- 5. Голиков С.П., Черный С.Г., Ивановский Н.В. Судовые компьютерные сети. Кондор, 2014. 237 с.
- 6. Белый О.В., Сазонов А.Е. Информационные системы технических средств транспорта. СПб: Элмор, 2011. 192 с.
- 7. Бройдо В.Л., Ильина О.П. Вычислительные системы, сети и телекоммуникации. СПб: Питер, 2011. 560 с.
- 8. Богодухов, С.И. Основы проектирования заготовок в автоматизированном машиностроении: учебник. [Электронный ресурс] : учебное пособие / С.И. Богодухов, А.Г. Схиртладзе, Р.М. Сулейманов [и др.]. Электрон. дан. М. : Машиностроение, 2009. 432 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=749 Загл. с экрана.
- 9. Юзова, В.А. Основы проектирования электронных средств. Конструирование электронных модулей первого структурного уровня: лабораторный практикум [Электронный ресурс]: учебное пособие. Электрон. дан. Красноярск: СФУ, 2012. 206 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=6043 Загл. с экрана.
- 10. Барбашов, Н.Н. Основы проектирования машин по динамическим и экономическим показателям [Электронный ресурс]: учебное пособие / Н.Н. Барбашов, Д.И. Леонов, И.В. Леонов. Электрон. дан. М.: МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2011. 80 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=52216 Загл. с экрана.
- 11. Марков, А.В. Основы проектирования измерительных приборов: учебное пособие для вузов [Электронный ресурс]: учебное пособие. Электрон. дан. СПб.: БГТУ "Военмех" им. Д.Ф. Устинова (Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова), 2014. 56 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=63692 Загл. с экрана.

Черный Сергей Григорьевич **Планирование конструкторской работы**

Методические указания для обучающихся по освоению дисциплины (приложение 2 к рабочей программе дисциплины) для курсантов направления подготовки 13.03.02 — «Электроэнергетика и электротехника» очной и заочной форм обучения

Тираж	экз. Заказ №	Подписано к печати	
Изд-во ФГБОУ ВО «	Керченский госуда	рственный морской технологический универсичь, ул. Орджоникидзе, 82	тет»