Приложение к рабочей программе дисциплины Теоретическая механика

Направление подготовки — 15.03.02 Технологические машины и оборудование Профиль — Машины и аппараты пищевых производств Учебный план 2016 года разработки.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине – совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения, а также уровня сформированности всех компетенций (или их частей), закрепленных за дисциплиной. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формированием компетенций, определенных в ФГОС ВО;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/ корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение в образовательный процесс университета инновационных методов обучения.

2. Структура ФОС и применяемые методы оценки полученных знаний

2.1 Общие сведения о ФОС

ФОС позволяет оценить освоение всех указанных в рабочей программе дескрипторов компетенции, установленных ОПОП. В качестве методов оценивания применяются: наблюдение за работой, наблюдение за действиями в смоделированных условиях, применение активных методов обучения, экспресс-тестирование, программированные тесты.

Структурными элементами ФОС по дисциплине являются: входной контроль (при наличии) (предназначается для определения уровня входных знаний), ФОС для проведения текущего контроля, состоящие из устных, письменных заданий, тестов, и шкалу оценивания, ФОС для проведения промежуточной аттестации, состоящий из устных, письменных заданий, и других контрольно-измерительные материалов, описывающих показатели, критерии и шкалу оценивания.

Применяемые методы оценки полученных знаний по разделам дисциплины

	Текущая аттестация (количество		
	заданий, работ)		Проможальный
Раздел	Экспресс опрос на	Выполнение	Промежуточная
	лекциях по	практических	аттестация
	текущей теме	заданий	
Раздел 1. Статика твердого тела	+	+	
Раздел 2. Кинематика точки и твердого тела	+	+	экзамен
Раздел 3. Динамика точки и твердого тела	+	+	

2.2 Оценочные материалы для проведения текущей аттестации

Входной контроль

Технология входного контроля предполагает проведение тестирования.

Оценивание входного тестирования осуществляется по номинальной шкале — за правильный ответ к каждому заданию выставляется один балл, за не правильный — ноль. Общая оценка каждого теста осуществляется в отношении количества правильных ответов к общему числу вопросов в тесте (выражается в процентах).

Тест считается пройденным (оценка «зачтено») при общей оценке 75%.

Количество попыток прохождения теста – одна. Время прохождения теста – 5 минут.

Вопрос	Ответы		
1. Единицей измерения силы является	а) Паскаль; б) Ньютон; в) Герц;		
2. Единица измерения работы в Международной системе единиц (СИ):	г) Джоуль а) Джоуль; б) Ньютон; в) Паскаль; г) Люмен		
3. Сила – это:	а) векторная величина, характеризующая механическое взаимодействие тел между собой; б) скалярная величина, характеризующая механическое взаимодействие тел между собой;		
	в) векторная величина, характеризующая динамическое взаимодействие тел между собой; г) скалярная величина, характеризующая динамическое взаимодействие тел между собой		
4. Единица измерения длины в системе СИ	а) метр;б) сантиметр;в) миллиметр;г) дециметр		
5. Равнодействующую двух сил можно найти:	а) по правилу треугольника; б) по правилу трапеции; в) по правилу квадрата; г) по правилу прямоугольника		
6. Две силы уравновешиваются, если они:	а) не равны по модулю, направлены по одной прямой в разные стороны; б) равны по модулю, направлены по одной прямой в разные стороны; в) равны по модулю, направлены по одной прямой в одну сторону; г) не равны по модулю, направлены по одной прямой в одну сторону		
7. Переведите 50 квадратных сантиметров в квадратные метры	a) 5; б) 0,005; в) 0,05; г) 0,0005		
8. Центр тяжести треугольника находится на пересечении	а) горизонталей;б) медиан;в) диагоналей;г) биссектрис		
9. Силы, производящие одинаковое воздействие на одно и то же твердое тело, называются:	а) эквивалентными; б) внутренними; в) внешними; г) равнодействующими		

Экспресс опрос на лекциях по текущей теме

Раздел 1. Статика твердого тела

Лекция 1-2. Основные понятия статики. Аксиомы статики. Связи и их реакции. Принцип освобождения от связей. Плоская система сходящихся сил. Равнодействующая системы сходящихся сил. Геометрические и аналитические условия равновесия сходящейся системы сил. Проекции силы на координатные оси. Параллельные силы

- 1. Основные понятия статики. Аксиомы статики.
- 2. Связи и их реакции. Принцип освобождения от связей
- 3. Плоская система сходящихся сил. Равнодействующая системы сходящихся сил. Геометрические и аналитические условия.

Лекция 3-4. Момент силы относительно центра и оси, их взаимозависимость. Пара сил. Момент пары сил. Теория пар. Приведение пространственной системы сил к центру. Главный вектор и главный момент. Условия равновесия пространственной системы сил. Система сил, произвольно расположенных в плоскости. Теорема о параллельном переносе сил.

- 1. Момент силы относительно центра и оси, их взаимозависимость
- 2. Приведение пространственной системы сил к центру. Главный вектор и главный момент.
- 3. Система сил, произвольно расположенных в плоскости. Теорема о параллельном переносе сил.

Лекция 5-6. Сосредоточенные силы и распределённые нагрузки. Равновесие при наличии сил трения. Трение сцепления, качения.

- 1. Сосредоточенные силы и распределённые нагрузки
- 2. Равновесие при наличии сил трения
- 3. Трение скольжения, качения

Лекция 7-8. Пространственная произвольная система сил. Пары в пространстве. Сложение пар. Главный вектор и главный момент, их вычисление. Центр тяжести твёрдого тела

- 1. Пространственная произвольная система сил. Пары в пространстве
- 2. Сложение пар. Главный вектор и главный момент, их вычисление
- 3. Центр тяжести твёрдого тела

Раздел 2. Кинематика.

Лекция 9-10. Кинематика. Основные понятия. Способы задания движения точки – естественный, координатный и векторный. Определение скорости точки для этих способов. Определение ускорения для различных способов задания движения точки. Нормальное и тангенциальное ускорение.

- 1. Кинематика. Основные понятия
- 2. Способы задания движения точки естественный, координатный и векторный.
- 3. Определение скорости точки для этих способов. Определение ускорения для различных способов задания движения точки

Лекция 11-12. Классификация движений твёрдого тела. Теорема о траекториях, скоростях и ускорениях точек поступательно движущегося тела. Вращательное движение твёрдого тела. Угловые и линейные параметры вращения и их векторные представления

- 1. Классификация движений твёрдого тела
- 2. Вращательное движение твёрдого тела
- 3. Угловые и линейные параметры вращения и их векторные представления

Лекция 13-14. Сложное движение точки. Теорема о сложении скоростей. Теорема Кориолиса. Модуль и направление кориолисова ускорения.

- 1. Сложное движение точки
- 2 Теорема о сложении скоростей. Теорема Кориолиса
- 3. Модуль и направление кориолисова ускорения

Лекция 15-16. Плоскопараллельное движение точки. Определение вектора скорости точки плоской фигуры. Мгновенный центр скоростей. Определение вектора ускорения точки плоской фигуры.

- 1. Плоскопараллельное движение твердого тела
- 2. Мгновенный центр скоростей
- 3. Определение вектора ускорения точки плоской фигуры

Лекция 17-18. Движения тела вокруг неподвижной точки и движение свободного тела. Сложное движение тела.

- 1. Движения тела вокруг неподвижной точки и движение свободного тела
- 2 Сложное движение тела.

Раздел 3 Динамика

Лекция 19. Динамика. Основные понятия. Законы динамики. Основное уравнение динамики. Дифференциальные уравнения движения материальной точки. Прямая и обратная задача динамики

- 1. Динамика. Основные понятия. Законы динамики.
- 2 Дифференциальные уравнения движения материальной точки
- 3. Прямая и обратная задача динамики

Лекция 20. Относительное движение точки

- 1. Относительное движение точки
- 2. Сила Кориолиса

Лекция 21. Свободные колебания материальной точки. Уравнение движения. Круговая и линейная частота. Период свободных колебаний. Колебания при наличии сил сопротивления. Затухающие колебания. Апериодическое движение. Вынужденные колебания. Уравнение движения. Резонанс.

- 1. Свободные колебания материальной точки
- 2. Затухающие колебания
- 3. Апериодическое движение.

Лекция 22. Механическая система. Центр масс системы. Свойства внутренних сил механической системы. Момент инерции твердого тела. Теорема Штайнера. Теорема о движении центра масс. Теорема об изменении количества движения материальной точки и механической системы. Теоремы об изменении момента количества движения материальной точки и механической системы относительно центра и оси.

- 1. Механическая система. Центр масс системы.
- 2. Момент инерции твердого тела. Теорема Штайнера
- 3. Теоремы об изменении момента количества движения материальной точки и механической системы относительно центра и оси

Лекция 23. Элементарная работа силы и работа на конечном перемещении. Работа силы тяжести, силы упругости и пары сил.

- 1. Элементарная работа силы и работа на конечном перемещении
- 2. Работа силы тяжести, силы упругости и пары сил.

Лекция 24. Теоремы об изменении кинетической энергии материальной точки и механической системы.

- 1. Теоремы об изменении кинетической энергии материальной точки
- 2. Теоремы об изменении кинетической энергии механической системы.

Лекция 25. Вычисление кинетической энергии твердого тела для различных видов движения.

1. Вычисление кинетической энергии твердого тела для различных видов движения

Лекция 26. Принцип Даламбера для материальной точки и механической системы. Общее уравнение динамики

- 1. Принцип Даламбера для материальной точки и механической системы
- 2. Общее уравнение динамики

Лекция 27. Применение общих теорем динамики твердого тела. Уравнение Лагранжа второго рода.

- 1. Применение общих теорем динамики твердого тела
- 2. Уравнение Лагранжа второго рода.

Критерии оценивания

Экспресс-опрос на лекции проводится путем письменных ответов на все ответы соответствующей лекции. Оценивание осуществляется по двухбальной системе: «не зачтено», «зачтено». Оценка «зачтено» выставляется в случае правильного ответа на все вопросы экспресс-опроса (допускается наличие неточностей в ответах не более чем в 50% вопросов). Время на прохождение экспресс-опроса – 5 минут; количество попыток прохождения экспресс-опроса – неограниченно.

Выполнение практических заданий

Критерии оценивание

Оценивание осуществляется по четырёхбальной системе.

В процессе оценивания учитываются отдельные критерии и их «весомость»

Критерии оценивания	Весомость, %
- выполнение всех пунктов задания	до 30
- качественное оформление практического задания	до 30
- точность и правильность выполнения практического задания	до 40

Защита практических заданий не проводится.

В процентном соотношении оценки (по четырехбальной системе) выставляются в следующих диапазонах:

«неудовлетворительно» («не зачтено») — менее 70% «удовлетворительно» («зачтено») — 71-80% «хорошо» («зачтено») — 81-90% «отлично» («зачтено») — 91-100%

2.3 Оценочные материалы для проведения промежуточной аттестации

Зачет

Зачет проводится в первом семестре изучения дисциплины. Оценивание осуществляется по двухбальной системе.

Критерии оценивания

Промежуточная аттестация считается пройденной (получена оценка «зачтено») если все виды текущей аттестации (экспресс-опросы, выполнение практических заданий) выполнены на оценку «зачтено».

Экзамен

Условием допуска к промежуточной аттестации является получение по всем видам текущей аттестации (экспресс-опросы, практические задания, защита отчетов по лабораторным работам) оценки «зачтено».

Экзамен проводится во втором семестре изучения дисциплины.

Технология проведения экзамена — устный экзамен путем ответа на 3 вопроса теоретической части дисциплины по темам соответствующего семестра.

Вопросы, выносимые на экзамен:

- 1. Что изучает статика?
- 2. Определить основные понятия статики: абсолютно твердое тело, сила, эквивалентные системы сил, равнодействующая и уравновешивающая силы, внешние и внутренние силы.
 - 3. Сформулируйте аксиомы статики.
 - 4. Что называется связью? Объясните суть принципа освобождения от связей.
 - 5. Что такое главный вектор и главный момент системы сил?
 - 6. Какая система сил называется сходящейся?
 - 7. Каковы условия и уравнения равновесия системы сходящихся сил в пространстве и на плоскости?
 - 8. Каковы условия равновесия системы пар на плоскости и в пространстве?
 - 9. Статически неопределимые системы: общие сведения, «лишние» связи
 - 10. Какая система сил называется парой?
 - 11. Что называется моментом силы относительно центра?
 - 12. Записать три формы уравнений равновесия плоской системы сил.
 - 13. Какие существуют способы задания движения точки?
 - 14. Что значит задать движение точки:
 - а) естественным способом;
 - б) координатным способом;
 - в) векторным способом.
 - 15. Что такое траектория движения точки?
 - 16. Как определяется ускорение при:
 - а) естественном способе задания движения точки;
 - б) координатном способе задания движения точки;
 - в) векторном способе задания движения точки.

Назовите виды движения твердого тела.

- 20.. Определите поступательное движение твердого тела
- 22. Определите вращательное движение твердого тела
- 23. Как формулируется теорема о траекториях, скоростях и ускорениях точек поступательно движущегося твердого тела?
- 24. Что является основной характеристикой при вращательном движении твердого тела
- 25. Что такое угловая скорость?
- 26. Что такое угловое ускорение?
- 27. Что такое плоское движение твердого тела?
- 28. Как определяется ускорение точек при плоском движении?
- 29. Что такое сложное движение точки?

- 30. Как определяется скорость при сложном движении точки?
- 31. Как определяется ускорение при сложном движении точки?
- 32. Сформулируйте правило Жуковского
- 33. Механическая система. Классификация связей и сил.
- 34. Основные свойства внутренних сил механической системы. Работа внутренних сил твердого тела.
 - 35. Теорема о движении центра масс механической системы. Ее следствия.
 - 36. Теорема об изменении количества движения механической системы. Ее следствия.
 - 37. Теорема об изменении момента количества движения материальной точки.
- 38. Основные свойства внутренних сил механической системы. Работа внутренних сил твердого тела.
 - 39. Уравнение Лагранжа второго рода

Время подготовки к ответу не менее 45 минут.

Критерии оценивания

Оценивание осуществляется по четырёхбальной системе.

- «5» (отлично): получены ответы на все вопросы экзаменационного билета, студент четко и без ошибок ответил на все дополнительные вопросы по тематики экзаменационного билета.
- «4» (хорошо): получены ответы на все вопросы экзаменационного билета; студент ответил на все дополнительные вопросы по тематики экзаменационного билета.
- «3» (удовлетворительно): получены ответы на 2 или 3 вопроса экзаменационного билета с замечаниями; студент ответил не менее чем на 50% дополнительных вопросов по тематики экзаменационного билета.
- «2» (не зачтено): получены ответы менее чем на 2 вопроса экзаменационного билета, студент ответил менее чем на 50% дополнительных вопросов по тематики экзаменационного билета.