Приложение к рабочей программе дисциплины Органическая химия

Направление подготовки — 19.03.03 Продукты питания животного происхождения Профиль — Технология рыбы и рыбных продуктов Учебный план 2016 года разработки

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1 Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине – совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения, а также уровня сформированности всех компетенций (или их частей), закрепленных за дисциплиной. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формированием компетенций, определенных в ФГОС ВО;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/ корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение в образовательный процесс университета инновационных методов обучения.

2 Структура ФОС и применяемые методы оценки полученных знаний

2.1 Общие сведения о ФОС

ФОС позволяет оценить освоение всех указанных в рабочей программе дескрипторов компетенции, установленных ОПОП. В качестве методов оценивания применяются: наблюдение за работой, наблюдение за действиями в смоделированных условиях, применение активных методов обучения, экспресс-тестирование, программированные тесты. Структурными элементами ФОС по дисциплине являются: входной контроль (при наличии) (предназначается для определения уровня входных знаний), ФОС для проведения текущего контроля, состоящие из устных, письменных заданий, тестов, и шкалу оценивания, ФОС для проведения промежуточной аттестации, состоящий из устных, письменных заданий, и других контрольно-измерительные материалов, описывающих показатели, критерии и шкалу оценивания.

Применяемые методы оценки полученных знаний по разделам дисциплины

	Текущая аттестация (колич	Промежуточная	
Раздел, тема	Экспресс опрос на лекциях по текущей теме	Выполнение лабораторных заданий	аттестация
Тема 1. Теоретические основы органической химии	+	+	экзамен
Тема 2. Основные классы углеводородов	+	+	экзамен
Тема 3. Основные классы кислородсодержащих органических соединений	+	+	экзамен

Тема 4. Основные классы			
азотсодержащих органических	+	+	экзамен
соединений			
Тема 5. Гетероциклические			0.1600.0.11
органические соединения	+	+	экзамен
Тема 6. Высокомолекулярные			DISTRIBUTION COLUMN
органические соединения (полимеры)	+	+	экзамен

2.2 Оценочные материалы для проведения текущего контроля

Входной контроль

Технология входного контроля предполагает проведение тестирования.

Оценивание входного тестирования осуществляется по номинальной шкале — за правильный ответ к каждому заданию выставляется один балл, за не правильный — ноль. Общая оценка каждого теста осуществляется в отношении количества правильных ответов к общему числу вопросов в тесте (выражается в процентах).

Тест считается пройденным (оценка «зачтено») при общей оценке 75%.

Количество попыток прохождения теста — одна. Время прохождения теста — $5\,\mathrm{минуr}.$

	Вопрос	Ответы
1	Для органических соединений	1) ионный; 3) ковалентный;
	наиболее характерным является вид связей	2) металлический; 4) водородный
2	Метилциклогексан имеет структурную формулу:	1) CH ₃ 3) C ₂ H ₅
		2) CH ₃ 4) CH ₃
3	Хлорпроизводное алкана	1) 2-трихлорметилбутан
	CH ₂ -CH ₂ -CH-CCl ₂	2) 2-метил-1-трихлорбутан
	CH ₃ -CH ₂ -CH-CCl ₃	3) 1-трихлор-2-метилбутан
	ĊH ₃	4) 2-метил-1,1,1-трихлорбутан
	имеет название:	
4	Вещество структурной формулы	1) 3,3,2-триметилпропен-1;
	CH_3 CH_3	2) 2,3-диметилбуген-1;
	CH-C=CH ₂	3) 2,3-диметилбутен-3;
		4) 2,2-изопропил-1.
	CH ₃	
	имеет название	
5	Изомером 2-метилбутана является:	1) н-пентен; 3) 2-метилпентан;
_		2) пропан; 4) 2-метилпропан.
6	Изомером 2,3-диметилбутана	1) н-гексан; 3) н-пентан;
	является	2) 2,3-диметилпентан; 4) 3-метилбуган.
7	Гомолог ацетилена, содержащий 8	1) C ₃ H ₈ ; 3) C ₅ H ₈ ;
	атомов водорода, имеет формулу:	2) C ₄ H ₈ ; 4) C ₆ H ₈ .
8	Гомологом метана является	1) C ₃ H ₈ ; 2) C ₄ H ₈ ; 3) C ₅ H ₁₀ ; 4) C ₇ H ₈ .
9	Гомологом этилена является	1) этан; 3) этин;
		 пропилен; ацетилен.
		/ 1 / / `

	Вопрос	Ответы
10	Вещества являются между собой	1) CH ₄ , C ₃ H ₈ , C ₄ H ₈ ; 3) CH ₄ , C ₄ H ₁₀ , C ₇ H ₈ ;
	гомологами в ряду	2) C ₂ H ₆ , C ₄ H ₁₀ , C ₆ H ₁₄ ; 4) C ₂ H ₄ , C ₄ H ₁₀ , C ₈ H ₁₈ .
11	Число σ-связей в молекуле	1) 5; 2) 7; 3) 8; 4) 9
	бутадиена –1,3 равно:	, , , , , , , ,
12	В схеме органического синтеза:	
12	моногалогенпроизводное алкана	1) алкин; 3) спирт;
	$+KOH$ $\sim X_1$	2) алкен; 4) алкан.
	спирт 21	, , , ,
	продуктом реакции (Х1) является	
13	В реакции Вюрца при	1) 2,3-диэтилбуган;
	взаимодействии двух молекул 2-	2) 3,4-диметилгексан;
	хлорбутана образуется:	3) 3-метил-2-этилпентан;
		4) 2-метил-3-этилпентан.
14	В реакцию Вюрца может	1) метан; 3) метилциклопропан;
	вступать:	 этилен; йодэтан.
15	Только бутан образуется в	1) бромметана;
	результате реакции Вюрца из:	2) смеси бромметана и 1-бромпропана;
		3) бромэтана; 4) эхээх блохиологч 2 блохилганах
16	Молекула алкана содержит 8	4) смеси бромметана и 2-бромпропана.
10	Молекула алкана содержит 8 атомов водорода. Молярная масса	1) 38; 2) 40; 3) 42; 4) 44
	алкана (г/моль) равна	1) 36, 2) 40, 3) 42, 4) 44
17	Молярная масса алкана равна 100	1) 12; 2) 14; 3) 16; 4) 18.
17	г/моль. Число атомов водорода в	1) 12, 2) 11, 3) 10, 1) 10.
	молекуле алкана равно	
18	Молярная масса алкана равна 142	1) 6; 2) 8; 3) 10; 4) 12.
	г/моль. Число атомов углерода в	
	структуре алкана равно	
19	Из перечисленных веществ с	1) раствор КМпО4; 3) хлороводород;
	предельными углеводородами	2) гидрооксид калия; 4) хлор.
	реагирует	
20	С гексаном взаимодействует	1) водный раствор перманганата калия;
		2) гидрооксид натрия;
		3) бромная вода;
21	D avaira magazzara	4) хлор при освещении.
21	В схеме реакции	1) 2) 2) 20
	$X_1 + Br_2 \xrightarrow{h_0} CH_3 - CH_2Br + HBr$	 этан; этилен; ацетилен.
	$X_1 + B_1$ СП3-СП2ВГ + ПВГ исходным реагентом (X_1) является	2) этилен, 4) ацетилен.
22	При взаимодействии смеси	1) 2; 2) 3; 3) 4; 4) 5.
	иодметана и иодэтана с избытком	
	металлического натрия могут быть	
	получены различные органические	
	соединения в количестве	
23	Пропан вступает в реакцию с:	1) раствором КМпО4 при комнатной
		температуре;
		2) водой;
		3) хлором на свету;
		4) металлическим натрием.

	Вопрос	Ответы
24	При действии избытка спиртового	1) пропанол-1,2; 3) 3-хлорпропен;
	раствора КОН на 1,2-	2) пропин; 4) 2-хлорпропен.
	дихлорпропан преимущественно	
	образуется	
25	В алканах цепь углеродных атомов	1) дегидрирования; 3) Вюрца;
	укорачивается в результате	2) бромирования; 4) крекинга.
	реакции	
26	При гидролизе карбида кальция	 ацетальдегид; ацетилен;
	одним из продуктов реакции	2) этилен; 4) бензен.
27	является	1)
27	При гидролизе пропина при повышенной температуре в кислой	 диметилкетон; ацетальдегид; зуксусная кислота; этанол.
	среде в присутствии H ₂ SO ₄	2) ацетальдегид, 4) этанол.
	образуется	
28	Бензен может быть получен	1) изомеризацией гексана;
20	Bensen Moker obrib hosty ten	2) циклизацией гексана;
		3) тримеризацией ацетилена;
		4) тримеризацией этилена.
29	Количество молей карбида	
	кальция, необходимого для	1) 1,0; 2) 1,5; 3) 2,0; 4) 2,5.
	получения 33,6 л (н.у.) ацетилена,	
	равно	
30	Углеводород $CH_2-C\equiv C-CH_3$	
	$CH_2-C=C-CH_3$	1) 4-метилбутин-3; 3) ацетилен; 2) 1-метилбутин-1; 4) пентин-2.
	CH ₃	2) 1-метилоугин-1, 4) пентин-2.
	имеет название	
31	Ацетальдегид получают из	1) гидрирования;
	ацетилена путем его	2) гидратации в присутствии подкисленного
		раствора сульфата ртути (II);
		3) окисления подкисленным раствором
		перманганата калия;
		4) горения.
32	В образовании молекулы пропина	1) 2; 3) 6;
	СН3 — С ≡ СН число гибридных	2) 4; 4) 8.
	атомных орбиталей, принимающих участие в	
	образовании молекулы, равно	
33	Молярная масса алкина равна	1) 6; 3) 12;
	82 г/моль. Число атомов водорода	2) 10; 4) 16.
	в молекуле алкина равно	, , , , , , , , , , , , , , , , , , , ,
34	Состав молекул ацетиленовых	1) C_nH_{2n+2} ; 3) C_nH_{2n-2} ;
	углеводородов (алкинов)	2) C_nH_{2n} ; 4) C_nH_n .
	соответствует общей формуле	
35	Алкин, имеющий строение	1) 1,2,3-триметилпентин-4;
	НС≡С−СН−СН−СН2	2) 3,4-диметилгексин-5;
	CH ₃ CH ₃ CH ₃	3) 3,4-диметилгексин-1;
		4) 3,4,5-триметилпентин-1.
	называется	

	Вопрос	От	веты
36	Продуктом димеризации	1) бензен;	3) ацетальдегид;
	ацетилена в присутствии	2) бутадиен-1,3;	
	катализатора является	, ,	,
37	У атома углерода, участвующего в	1) sp;	3) sp^3 ;
	образовании —С≡С— связи в	2) sp ² ;	4) sp^3d^2 .
	алкинах, тип гибридизации	, 1	, 1
38	К классу алкинов относится	1) C ₂ H ₄ ;	3) C ₂ H ₆ ;
		2) CH ₄ ;	4) C_2H_2 .
39	При гидролизе ацетилена при	1) этанол;	3) уксусная кислота;
	повышенной температуре в	2) ацетальдегид;	4) этилен.
	присутствии HgSO ₄ образуется		,
40	Получению бугалиена-1,3 по	1) 2 CH ₂ =CHCl + 2N	$Ia \longrightarrow C_4H_6 + 2NaCl$
	методу С.В. Лебедева		. 0
	соответствует схеме химической	$2) C_4H_{10} \longrightarrow C_4H_6$	+ 2H ₂
	реакции	a) a ==	
		$3) C_4H_{10} \longrightarrow C_4H_8$	$\longrightarrow C_4H_6$
		4) 2C H OH -> C	и и ио
		4) 2C ₂ H ₅ OH → C	$_{4}H_{6} + H_{2} + H_{2}O$
41	Алкины могуг быть получены	1) из дигалогенпроиз	зводных;
		2) из ацетиленидов;	
		3) путем дегидриров	
		4) всеми перечисленными методами.	
42	По реакции Кучерова получают	1) этан из хлорэтана;	
		2) ацетальдегид из а	-
		 винилацетилен из 	*
12	D	4) бутадиен-1,3 из эт	
43	В превращении	1) метан;	3) этан;
	$3X_1 \xrightarrow{C_{akrr}, t^0}$ бензен	2) этилен;	4) ацетилен
44	исходным реагентом (X ₁) является Винилацетилен имеет	1) СЦа — СЦ СЪ	3) $CH_2 = CH - C \equiv CH$;
44	структурную формулу	2) CH ₂ = CH - CI, 2) CH ₂ = CH - OH;	
45		1) 1-бромпропен;	3) 1,2-дибромпропен;
43	При взаимодействии 1 моль пропина и 1 моль бромоводорода	2-бромпропен;	4) 2,2-дибромпропен.
	преимущественно образуется	2-opomiiponen,	<i>ч) 2,2-диоромпропен.</i>
46	В молекуле алкадиена 6 атомов	1) 80;	3) 84;
70	углерода. Молярная масса (в	2) 82;	4) 86.
	г/моль) алкадиена равна	<i>2)</i> 02,	1) 00.
47	В соответствии с правилом	1) к наименее гилпог	енизированному атому
',	Марковникова присоединение	углерода;	January Company
	галогенводородов к алкенам	= =	енизированному атому
	происходит так, что атом водорода	углерода;	william y
	присоединяется	• • ·	расположенному слева
	1	от двойной связи;	1 J J
			расположенному справа
		от двойной связи.	<i>J</i> 1
48	Формуле C _n H _{2n-2} соответствует	1) уксусный альдегид	3) бутадиен-1,3;
	соединение	2) циклогексан;	4) толуен.

	Вопрос	Ответы
49	В лаборатории ацетилен обычно	1) прямым синтезом из углерода и водорода;
	получают	2) взаимодействием карбида кальция с
		водой;
		3) дегидрированием этилена;
	**	4) крекингом этана.
50	Натуральный каучук является	1) изопрена; 3) пропилена;
= 1	полимером	2) дивинила; 4) этилена.
51	Бензен может быть получен	1) каталитическим дегидрированием
		циклогексана;
		2) дегидроциклизацией парафиновых
		углеводов; 3) тримеризацией ацетилена;
		4) всеми перечисленными методами.
52	Фенилом является радикал	1) CH ₃ -C ₆ H ₄ - ; 3) C ₆ H ₅ CH ₂ -
32	Фенилом является радикал	2) C ₆ H ₅ - ; ; 4) CH ₂ = CH
53	Число р-электронов, образующих	1) шести; 3) четырем;
	единую π-электронную систему	2) двенадцати;4) трем.
	ароматического ядра в бензене,	, , , , , , , , , , , , , , , , , , ,
	равно	
54	Из 11,2 л (н.у.) ацетилена было	1) 67; 2) 77; 3) 87; 4) 92.
	получено 10 г бензена. Массовая	
	доля (в %) выхода бензена от	
	теоретически возможного равна	
55	Процессу получения бензена	Рt/C,~300°C или
	дегидрированием циклогексана	1) $P_{t/Al_2O_3,\sim 450^0C}$ + 3H ₂
	соответствует реакция	2000
		2) H— $C_6H_{14} = \frac{Pt/C, \sim 300^{0}C}{Cr_2O_3/Al_2O_3, MoO, \sim 300^{0}C} = +4H_2$
		3) 3 HC≡CH C
		~500°C
		4) СН _{3 катализатор, Н2}
		4) $\sim 700^{0} \text{C}$ + CH ₄
		~700 C
56	Углеводород строения имеет	1) 1,4-диметил-2-этилбензен;
	CH ₃ ↓	2) 1,4-диметил-3-этилбензен;
	C_2H_5	3) 2-этил-1,4-диметилбензен;
		4) 1,4-диметил-5-этилбензен.
	СН ₃ название	
57	Число от-связей в молекуле	1) четырем; 3) девяти;
	бензена равно	2) шести; 3) девяти, 4) двенадцати.
58	При полном гидрировании смеси	1) только циклобутан;
	циклопропана и циклобутана	2) только буган;
	образуется	3) только пропан;
	F	4) смесь бугана и пропана.
59	Все атомы углерода в молекуле	1) sp; 2) sp ² ; 3) sp ³ ; 4)sp ³ d ²
	бензена имеют тип гибридизации	

	Вопрос	Ответы
60	Число изомеров, которое имеет вещество, содержащее в бензеновом ядре одну метильную группу и один атом хлора, равно	1) двум; 2) трем; 3) четырем; 4) пяти.
61	С использованием реакции Вюрца получить толуен в одну стадию можно в результате взаимодействия	 хлорбензена и хлорметана; бензена и метана; бензена и хлорметана; хлорбензена и метана.
62	Из перечисленных ниже веществ способностью полимеризоваться обладает	1) пропан; 3) гексан; 2) 2-хлорбутан; 4) гексадиен.
63	В результате гидрирования циклопропана при температуре 50–70°С в присутствии Рt-катализатора получают	1) пропилен; 3) гексан; 2) пропан; 4) гексадиен.
64	Бензен не может быть получен в результате реакции	 тримеризации ацетилена; диенового синтеза; изомеризации н-гексана; дегидроциклизации н-гексана.
65	sp ² – гибридизация электронных облаков атомов углерода в молекуле	1) бензена; 3) алмаза; 2) ацетилена; 4) метана.
66	Из перечисленных ниже веществ в реакцию замещения с бромом вступает	1) бугадиен-1,3; 3) 2-метилпентен-2; 2) толуен; 4) ацетилен.
67	При взаимодействии хлористого метила с бензеном в присутствии AlCl ₃ продуктом реакции является	1) хлорбензен; 3) о-ксилен; 2) о-дихлорбензен; 4) толуен.
68	В схеме превращений $X_1 \rightarrow X_2 \rightarrow COOH$ промежуточными продуктами X_1 и X_2 являются, соответственно	1) н-гексан и бензен; 3) н-гексен и н-гексан; 2) н-гексен и толуен; 4) бензен и толуен.
69	Из перечисленных соединений нафталену соответствует формула	1) (1) (3) (1) (3)
		2) (1) (4)

	Вопрос	Ответы
70	В схеме превращений	1) этилен; 3) ацетилен;
	метан \rightarrow X \rightarrow бензен	 н-гексан; бугадиен.
	промежуточным продуктом Х	
	является	
71	Наименьшую массовую долю	1) ацетилен; 2) бензен; 3) этилен; 4) толуен.
	углерода имеет углеводород	, , , , , , , , , , , , , , , , , , ,
72	В схеме органического синтеза	1) водород; 3) бромоводород;
		2) бром; 4) водный p-р KMnO ₄ .
	$+X_1$ Br	
	исходным реагентом X_1 является	
73	При 50°C действие смеси азотной	1) бензенсульфокислоты; 3) нитробензена;
	и серной кислот на бензен	2) фенола; 4) изопропилбензена.
	приводит к образованию	, 1,,,,,
74	В схеме органического синтеза	1) бензен; 3) циклогексан;
• •	_	2) толуен; 4) метан.
	Х ОКИСЛЕНИЕ СООН	7) 5.55
	исходным веществом Х является	
75	Процессу получения бензена	Рt/C,~300 ⁰ С или
	дегидроциклизацией парафиновых	1) $\left[\begin{array}{c} 1 \\ \hline Pt/Al_2O_3, \sim 450^{\circ}C \end{array}\right] + 3H_2$
	углеводородов соответствует	10711203,~430 C
	реакция	2) H— $C_6H_{14} = \frac{P_t/C, \sim 300^0C}{Cr_2O_3/Al_2O_3, MoO_{\sim}300^0C} + 4H_2$
		3) 3 HC \equiv CH $\frac{C_{\text{ актив}}}{\sim 500^{0}\text{C}}$
		4) CH _{3 катализатор, H₂ + CH₄ ~700⁰C}
76	Предельные одноатомные спирты могут быть получены	 взаимодействием моногалоген- производных с водным раствором щелочи; гидратацией алкенов; восстановлением альдегидов и кетонов;
		4) всеми перечисленными методами.
77	В схеме превращений	1) буганол; 3) ацетон;
/ /	В слеме превращении	2) пропилен; 3) ацетон, 4) циклопропан.
	пропанол-1 — Х — пропанол-2	2) пропилен, 4) циклопропан.
	промежуточный продукт X	
78	При нагревании метанола с	1) метан; 3) диметиловый эфир;
	концентрированной серной кислотой образуется	2) полиэтилен; 4) ацетилен.

	Вопрос	Ответы
79	Процессу получения одноатомных	1) CH ₃ -CH-CH ₂ + NaOH $\xrightarrow{\text{H}_2\text{O}}$ CH ₃ -CH-CH ₃ $\stackrel{ }{\text{Br}}$ OH
	предельных спиртов	Rr OH
	восстановлением альдегидов	DI ON
	соответствует реакция	2) CH CH CH H CH CH CH CH
		2) $CH_3 - CH = CH_2 + H_2O \xrightarrow{H^+, t^0} CH_3 - CH - CH_3$
		OH
		3) $R-C$ $\xrightarrow{\text{катализ.}}$ R — CH_2OH
		H
		4) $CH_3 - C$ $+ H_2O \xrightarrow{H^+, t^0} CH_3COOH + CH_3CH_2OH$ OC_2H_5
		4) CH ₃ -C + H ₂ O - CH ₃ COOH + CH ₃ CH ₂ OH
		002113
80	При интенсивном окислении	1) бензойная кислота;
	фенола в присугствии смеси	2) хинон;
	$K_2Cr_2O_7 + H_2SO_4$ продуктом	3) смесь карбоновых кислот;
	реакции является	4) бензальдегид.
81	Этанол может быть получен	1) хлорэтана;
	методом гидролиза	2) глюкозы;
		3) ацетилена;
		4) метилового эфира уксусной кислоты.
82	Пентен-2 образуется при	1) 2-метилбуганола-1; 3) пентанола-2;
	внутримолекулярной	2) гексанола-2; 4) пентанола-1.
	дегидратации	
83	Этиленгликоль – это	1) гомолог фенола;
		2) одноатомный спирт;
		3) производное глицерина;
0.4	D. C	4) двухатомный спирт.
84	В лабораторном методе получения	1) водный раствор щелочи;
	алкенов из спиртов в качестве	2) спиртовый раствор щелочи;
	катализатора используют	3) концентрированную серную кислоту;4) металлический никель.
85	C HO HIGH O HOUSE IN DOCTROPON	· ·
0.5	С подкисленным раствором перманганата калия реагирует	 полиэтилен; бензиловый спирт; фромбензен.
86	Этанол может быть получен	1) метилового эфира уксусной кислоты;
00	,	1) метилового эфира уксусной кислоты, 2) этина;
	гидролизом	3) глюкозы;
		4) хлорэтана.
87	При взаимодействии 1 моль	1) 1,2-дихлорпропанол-1;
07	глицерина с 3 моль хлороводорода	2) 1,2,3-трихлорпропан;
	образуется	3) 1,3-дихлорпропанол-2;
	oopusyeren	4) 2,3-дихлорпропанол-1.
88	В этиловом спирте СН ₃ – СН ₂ –	1) ковалентная полярная; 3) ионная;
	ОН связь между атомами углерода	2) ковалентная неполярная; 4) водородная.
89	Вещество	1) пропана и калия;
09	CH ₂ -CH-CH ₂	1) пропана и калия; 2) глицерина и калия;
	- "	3) пропана и хлорида калия;
	ОК ОК ОК можно получить взаимодействием	4) бугана и хлорида калия.
L	MOMIO HOLLYTHID DOGHMULCHCIBACM	т) бугана и млорида калил.

	Вопрос	Ответы
90	При гидратации алкена строения	1) 3-метилбуганол-2;
	CH ₃	2) 2-метилбуганол-3;
	3,	3) 3-метилбуганол-1;
	CH—CH=CH ₂	4) 2-метилбуганол-4.
	CH ₃	-
	преимущественно образуется	
91	При нагревании (~ 1700С) этанола	1) диэтиловый эфир; 3) этилен;
	с избытком серной кислоты	2) этилацетат; 4) винилацетат.
	образуется	
92	В промышленности фенол	1) тримеризацией ацетилена;
	получают	2) изомеризацией диоксана;
		3) каталитическим окислением
		изопропилбензена (кумена);
93	Doorgang Monthly Strong Hold H	4) диеновым синтезом
73	Реакция между этанолом и пропановой кислотой называется	1) дегидратацией; 3) гидратацией; 2) омылением; 4) этерификацией.
94	В схеме органического синтеза	1) пропионовая кислота; 3) пропен;
	$X_1 \xrightarrow{\text{окисление}} \text{CH}_3 - \text{CH} - \text{CH}_2$	глицерин;глицерин;глицерин;пропанол-1.
		, , , , , , , , , , , , , , , , , , , ,
	ÓH OH	
	исходным реагентом Х ₁ является	
95	С гидроксидом меди (II) реагирует	1) CH ₃ – OH; 3) HO CH ₂ – CH ₂ – OH;
		2) CH ₃ – CH ₂ – OH; 4) C ₆ H ₅ – CH ₂ OH.
96	По сравнению с углеводородами	1) полярности связи в молекуле;
	спирты – жидкости по причине	2) амфотерности спиртов;
		3) слабой кислотности спиртов;
		4) образования водородных связей между молекулами.
97	В схеме превращений	1) пропилен и пропанол-2;
	пропанол- $1 \rightarrow X_1 \rightarrow$	2) пропилен и 2-метилбуган;
	\rightarrow X ₂ \rightarrow 2,3-диметилбутан	3) пропилен и 2-бромпропан;
		4) бугилен и 3-метилбутан.
	промежуточными продуктами X_1 и	, ,
00	Х2 являются	1) who way 2. 2) 2
98	При действии водного раствора	1) пропанол-2; 3) 2-метилпропанол-1; 2) 2 метилпропанол-2; 4) 2 метилпропанол-1;
	щелочи на 2-бром-2-метилпропан преимущественно образуется	2) 2-метилпропанол-2 4) 2-метилпропен.
99	При взаимодействии фенола с	1) бензойная кислота;
	водным раствором щелочи	1) оензоиная кислота, 2) Na-соль бензойной кислоты;
	образуется	3) фенолят натрия;
	P J	4) бензальдегид.
100	В схеме реакции	1)
	$X_{1}+H_{2}O \xrightarrow{t, \text{ катал.}} CH_{3}-CH-CH_{3}$	1) H_2C CH_2 3) $HC \equiv C - CH_3$;
	l I	, ; ;
	ОН	H ₂
	веществом Х1 является	2
		2) $H_3C-CH_2-CH_3$; 4) $H_2C=CH-CH_3$.
		3 2 3 , 2 3 .

Вопрос	Ответы
101 Альдегид строения СН ₃ -СН-С Н СН ₃ -СН-СН ₃ называется	 2,3-диметилпропаналь; 2-изопропилпропаналь; 2,3-диметилбутаналь; 2,3,3-триметилпропаналь.
102 Из приведенных ниже схем правильно отражает строение альдегидной группы схема	1) $R \leftarrow C$ δ^{+} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{-} δ^{+} δ^{-} δ^{-} δ^{+} δ^{-}
103 В ряду превращений первичный спирт → X → → карбоновая кислота веществом X является	 кетон; альдегид; алкилацетат.
104 Для получения 2,2-диметил- пропаналя необходимо окислить спирт	 2-метилбутанол-1; 2-метилпропанол-1; 2,2-диметилпропанол-1; пентанол-1.
105 Продуктом гидролиза ацетилена в среде H ₂ SO ₄ в присутствии HgSO ₄ является	1) ацетальдегид; 3) уксусная кислота; 2) ацетон; 4) этанол.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 2-хлор-3-метилбутаналь; 2-хлор-2,3,3-триметилбутаналь; 2-хлор-3,3-диметилэтаналь; 1-хлор-1,2,2-триметилбутаналь.
107 Реакцией 2-метилпропаналя с водородом получают	 бутанол; 2-метилпропановую кислоту; 2-метилпропанол-1; бутановую кислоту.
108 Альдегид строения CH ₃ -CH ₂ -CH-CH ₃ HC=O называется	1) буганаль-2; 3) 2-этилпропаналь; 2) 3-метил-4-буганаль; 4) 2-метилбуганаль.
109 Альдегиды могут быть получены	 окислением первичных спиртов; гидроформированием (оксосинтезом) алкенов; щелочным гидролизом дигалогенпроизводных; всеми перечисленными методами.
110 При полном гидрировании пропеналя (акролеина) образуется	1) пропанол-1; 3) пропан; 2) пропаналь; 4) пропановая кислота.

	Вопрос	Ответы
111	Кетоны характеризуются	, 0
	фундаментальной группой	1) $C = O$; 3) $-C$; OH 2) $-C$; 4) $-OH$.
		, , , , , , , , , , , , , , , , , , , ,
		ОН
		2) - (" : 4) - OH
		-7 C, 7 -On .
		п
112	Число изомерных альдегидов,	1) двум; 2) трем; 3) четырем; 4) пяти.
	имеющих общую формулу С ₄ H ₈ O,	
	равно	
113	Метилэтилкетон может быть	1) этанола; 3) буганола-1;
	получен окислением спирта	2) изопропанола; 4) буганола-2.
114	При взаимодействии предельных	1) карбоновые кислоты;
	альдегидов с водородом	2) первичные спирты;
	образуются	3) сложные эфиры;
	oopusyioien	4) простые эфиры.
115	В схеме органического синтеза	1) пропин; 3) пропанол-2;
110	присоединение	2) пропаналь;3) пропаналь;4) 1,2-дихлорпропан.
	$X \xrightarrow{\text{присоединение}} CH_3 - C - CH_3$	-/
	Ö	
	исходным веществом Х является	
116	При восстановлении	1) фенол;
	бензальдегида получают	2) бензен;
	l land in the state of the stat	3) бензойную кислоту;
		4) бензиловый спирт.
117	В молекуле формальдегида	1) 3σ-связи и 1π-связь;
	O Transfer de la constant de la cons	2) 2σ-связи и 2π-связи;
	HC"	 3) 1σ-связь и 3π-связи;
	H	 4) 4о-связи и 1π-связь.
110	число σ- и π-связей равно	· ·
118	В схеме органического синтеза	1) этилбромид; 3) бутан;
	$CH_3 - C \xrightarrow{H_2} X_1 \xrightarrow{+HBr} X_2 \xrightarrow{2Na} X_3$	2) этанол; 4) этановая кислота.
	CH_3-C X_1 X_2 X_3	
	H	
110	конечным продуктом Х ₃ является	1) ************************************
119	При гидрировании предельных	1) карбоновые кислоты; 3) простые эфиры;
120	альдегидов водородом образуются	2) вторичные спирты; 4) первичные спирты. 1) 10,5; 2) 16,8; 3) 24,2; 4) 36,5.
120	Масса (в гр) метаналя, которую	1) 10,5, 2) 10,0, 5) 24,2, 4) 30,3.
	можно получить при окислении	
121	0,35 моль метанола, равна	1) буданод 1: 2) будауулуу:
121	Изомером 2-метилпропаналя	1) буганол-1; 3) буганаль;
122	является	2) этаналь; 4) пентаналь.
122	В схеме превращения	1) CH ₃ -CH ₂ -CH ₂ -OH; 3) CH ₃ -CH ₂ -C, ; OH 2) CH ₃ -CH ₂ -C, ; 4) CH ₃ -CH ₂ -O-CH ₂ -CH ₃ .
	$X \xrightarrow{\text{Ag}_2\text{O}} \text{CH}_3 - \text{CH}_2 - \text{C} + \text{Ag} + \text{H}_2\text{O}$ ONH ₂	1) Cli3-Cli2 Cli2 Oli , 3/Cli3-Cli2-C , OH
	ONH ₂	2) CHCHC : 4) CHCHO-CHCH
	исходным веществом Х является	OH 2) CH ₃ -CH ₂ -C; 4) CH ₃ -CH ₂ -O-CH ₂ -CH ₃ .
123	пеходивім веществом ті является	1) CH ₃ – CH ₂ - CHO;
123	Изомером пентаналя является	2) CH ₃ – CH ₂ - CHO; 2) CH ₃ – CH = C (CH ₃) - CHO;
	соединение	2) CH ₃ - CH - C (CH ₃) - CHO, 3) (CH ₃) ₃ C - CHO;
		, , , ,
		4) (CH ₃) ₂ CH - CHO.

	Вопрос	Ответы	
124	В аммиачном растворе окисляется	1) C ₆ H ₅ - CHO; 3) C ₆ H ₅ - CO - CH ₃ ;	
	оксидом серебра вещество	2) $CH_3 - CO - CH_3$; 4) $C_6H_5 - CO - C_6H_5$.	
125	Кетоны могут быть получены	 окислением вторичных спиртов; шелочным гидролизом дигалогенпроизводных; гидролизом ацетиленовых углеводородов по реакции Кучерова; 	
		4) всеми перечисленными методами.	
126	Наиболее сильные кислотные свойства имеет вещество	1) CH ₂ -CH-CH ₂ ; 3) OH; OH CH ₃ -C'; 4) CH ₃ -C'; OH	
127	Жидкие жиры переводит в	1) раствор КОН; 3) бром;	
	твердые	2) раствор KMnO ₄ ; 4) водород.	
128	Изомером масляной кислоты является	1) щавелевая кислота; 2) валериановая кислота; 3) пентановая кислота; 4) 2-метилпропановая кислота.	
129	Взаимодействие между пальмитиновой кислотой и глицерином называется	1) этерификацией; 3) гидратацией; 2) омылением; 4) дегидратацией.	
130	Сложный эфир, получаемый при взаимодействии бензойной кислоты и этанола, называется	1) фенилацетат; 3) этилбензоат; 2) этилацетат; 4) этилфенолят.	
131	Функциональной группой карбоновых кислот является	1) $-C''$; 3) $-OH$; H 2) $-C-$; 4) $-C''$. OH	
132	Карбоновая кислота строения CH_3 — CH — $COOH$ C_2H_5 называется	1) 2-этилпропановая; 3) 2-этилпропионовая; 2) 2-метилбутановая; 4) 2-метилпропановая.	
133	В схеме органического синтеза $CH_3 - C \xrightarrow{O}_{+H_2} X_1 \xrightarrow{+HBr} X_2$ продуктами превращений X_1 и X_2 являются	 уксусная кислота и бромэтан; этанол и бромэтен; этанол и бромэтан; уксусная кислота и бромэтен. 	
134	В состав жиров входят:	высшие предельные и непредельные карбоновые кислоты; уксусная кислота; неорганические кислородсодержащие кислоты; бутановая кислота.	

	Вопрос	Ответы	
135	При взаимодейтсвии стеарата натрия с серной кислотой образуются	 сульфат натрия и тристеарин; сероводород и стеариновая кислота; глицерин и стеариновая кислота; сульфат натрия и стеариновая кислота. 	
136	В молекуле этановой кислоты число σ- и π-связей равно	 6σ-связей и 1π-связь; 7σ-связей и 1π-связь; 6σ-связей и 2π-связи; 8σ-связей и 2π-связи. 	
137	Кислые соли может образовывать кислота	 масляная; уксусная; уксусная. укороная. 	
138	В схеме превращений метан \rightarrow хлорметан \rightarrow метанола кислота продуктом X является	1) ацетилен; 3) этанол; 2) ацетальдегид; 4) формальдегид.	
139	Карбоновые одноосновные кислоты получают	 окислением кетонов; гидролизом функциональных производных карбоновых кислот (солей, сложных эфиров, хлорангидридов, ангидридов); окислением боковых цепей алкилароматических углеводородов; всеми перечисленными методами. 	
140	Максимальное количество (в моль) уксусной кислоты, которое может быть получено окислением 37 г этанола, равно	1) 0,4; 2) 0,6; 3) 0,8; 4) 1,0.	
141	В результате гидролиза жидкого жира образуются	 твердые жиры и смесь кислот; глицерин и непредельные кислоты; глицерин и предельные кислоты; твердые жиры и глицерин. 	
142	Этанол образует сложные эфиры в реакции с	1) азотной кислотой; 3) соляной кислотой; 2) пропановой кислотой; 4) метанолом.	
143	Жиры – это сложные эфиры	1) глицерина и высших карбоновых кислот; 2) этанола и минеральных кислот; 3) этанола и карбоновых кислот; 4) глицерина и минеральных кислот.	
144	При щелочном гидролизе фенилацетата в избытке щелочи образуется	1) фенол и соль уксусной кислоты; 2) фенол и уксусная кислота; 3) фенолят и уксусная кислота; 4) фенолят и соль уксусной кислоты.	
145	Сложный эфир можно получить при взаимодействии карбоновой кислоты с	1) ацетиленом; 3) этиленом; 2) хлороводородом; 4) метанолом.	

Вопрос		Ответы	
146	В схеме превращений C_2H_2 — CH_3 — C' — X — CH_3 — C' ONa	1) ацетальдегид; 3) этанол; 2) уксусная кислота; 4) метановая кислота.	
	промежуточным продуктом X является		
147	В состав жидких жиров входят остатки спирта	 этанола; глицерина; этандиола. 	
148	Жиры состоят из фрагментов молекул	 этиленгликоля и альдегидов; глицерина и альдегидов; глицерина и высших карбоновых кислот; этиленгликоля и высших карбоновых кислот. 	
149	Отличить уксусную кислоту от этанола можно с помощью	1) бромной воды; 2) раствора перманганата калия; 3) соды; 4) гидрооксида меди (II).	
150	В отличие от карбоновых кислот аминокислоты	 реагируют с кислотами; взаимодействуют со щелочами; взаимодействуют со спиртами; способны образовывать амидные связи. 	

Экспресс опрос на лекциях по текущей теме

Лекция 1. Предмет органической химии. Теория химического строения.

Конгрольный вопрос

- 1. Опишите электронную конфигурацию атома углерода в CH4, CH2=CH2, CH ≡ CH; атома кислорода в H2O; атома азота в NH3.
- 2. С помощью теории MO и мезомерных проявлений опишите состояние связей в моле-кулах CH₃COCH₃, CH₃CONH₂,CH₂=CHCOCH₃,CH₃NO₂.

Лекция 2. Классификация органических соединений.

Контрольный вопрос

- 1. На основании электронного строения двойной связи предположите, какие типы реак-ций наиболее характерны для алкенов.
- 2. Перечислите основные типы реакций, характерные для этиленовых углеводородов.

Лекция 3 Насыщенные углеводороды.

Контрольный вопрос

- 1. Напишите возможные структуры общей формулы С4H10 и С6H14. Обозначьте вторич-ные, третичные и четвертичные атомы углерода в каждом изомере. Назовите изомеры по номенклатуре IUPAK.
- 2. Напишите структурные формулы веществ, которые содержат такие группы: а) две изопропильные; б) одну изобутильную; в) одну втор-бутильную; г) метильную, н-пропильную и втор-бутильную.

Лекция 4. Ненасыщенные углеводороды

- 1. Сформулируйте правило Марковникова. Приведите по две реакции гидрогалогениро-вания и гидратации, иллюстрирующие его.
- 2. Среди реакций присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация) только гидрирование и гидратацию можно считать обратимыми реакциями.

Обьясните почему.

Лекция 5. Ароматические углеводороды.

Контрольный вопрос

- 1. Опишите простые химические реакции, с помощью которых можно различить:
- а) бензен и циклогексан, б) бензен и 1-гексен, в) толуен и н-гептан.
- г) хлорбензен и этилбензен.
- 2. Какие из аренов при монобромировании в присутствия FeBг3 образуют единственное монобромпроизводное?

Лекция 6. Галогенпроизводные ациклических углеводородов

Контрольный вопрос

- 1. Предложите схему синтеза: хлористого этила, изопропилбромида, хлористогобензила.
- 2. Предложите схему синтеза из изопропилового спирта таких соединений:
- 1-хор-2-пропанола; 1,2-дихлорпропана; 2-бромпропена;
- 1,3-дихлор-2-пропанола; 2,3-дибром-1-пропанола

Лекция 7. Спирты и простые эфиры.

Контрольный вопрос

- 1. Какие типы реакций характерны для предельных одноатомных спиртов?
- 2. Как проявляются кислотные свойства спиртов? Сравните кислотные свойства воды и спиртов. Объясните причину меньшей кислотности алканолов.

Лекция 8 Фенолы и нафтолы.

Контрольный вопрос

- 1. В чем заключаются сходства и отличия между одноатомными и многоатомными спиртами в реакциях дегидратации и окисления?
- 2. Приведите классификацию спиртов по числу гидроксильных групп, типу углеводо-родного радикала, положению группы ОН в углеродной цепи.

Лекция 9. Альдегиды и кетоны.

Конгрольный вопрос

- 1. Какие методы можно использовать для получения изомасляного альдегида, метил- втор- бутилкетона, бензальдегида? Напишите уравнения соответствующих реакций.
- 2. Назовите основные способы получения кетонов и альдегидов. Приведите по одному примеру реакций каждого типа.

Лекция 10 Карбоновые кислоты.

Контрольный вопрос

- 1. Какие вещества называются карбоновыми кислотами? Приведите примеры. Какая функциональная группа называется карбоксильной?
- 2. Как классифицируют карбоновые кислоты по числу карбоксильных групп и типу углеводородного радикала? Приведите примеры кислот каждого типа.

Лекция 11. Сложные эфиры.

Контрольный вопрос

- 1. Какие реакции называются реакциями эстерификации? Как называют производные кислот, образующихся в этом процессе? Какой катализатор используется в реакции эстерефикации? Как смещают равновесие реакции вправо?
- 2. С помощью каких реакций можно осуществить превращения: нитрил \to амид \to кислота \to хлорангидрид \to ангидрид \to сложный эфир.

Лекция 12. Углеводы.

Контрольный вопрос

- 1. Являются ли глюкоза и фруктоза полифункциональными соединениями? Какие функциональные группы присутствуют в их молекулах?
- 2. Как с помощью химических реакций можно доказать наличие в глюкозе альдегидной и несколько гидроксильных групп?

Лекция 13. Амины жирного и ароматического рядов

- 1. Какие органические вещества называются аминами?
- 2. Приведите классификацию аминов по числу и природе углеводородных радикалов, связанных с

атомом азота.

Лекция 14. Аминокислоты, пептиды, белки.

Контрольный вопрос

- 1. Написать реакции диссоциации аланина и лизина в водных растворах. Указать их изоэлектрическую точку и состояние этих кислот в сильнокислой и сильнощелочной средах?
- 2. Написать схемы образования глицил-аланил-валина и лейцил-аланил-глицина. Что такое пептидная связь?

Лекция 15. Нуклеиновые кислоты

Контрольный вопрос

- 1. Из каких структурных компонентов состоят рибонуклеотиды и дезокси-рибонуклеотиды?
- 2. Какие конформации молекул имеют разные нуклеотиды? 3. Как образуются нуклеозиды и их фосфорнокислые эфиры?

Лекция 16. Пяти и шестичленные гетероциклические соединения

Контрольный вопрос

- 1. Как классифицируют гетероциклические соединения?
- 2. Приведите примеры насыщенных гетероциклов.

Лекция 17. Алкалоиды

Контрольный вопрос

- 1. Классификация и номенклатура алкалоидов.
- 2. Назовите важнейших представителей алкалоидов группы фенилэтиламина.

Лекция 18. Особенности физико-химических свойств полимеров

Контрольный вопрос

- 1. Какие полимеры называют гетероцепными?
- 2. Что представляют собой сетчатые полимеры?

Лекция 19. Полимерные материалы: пластмассы, пленки, резина

Контрольный вопрос

- 1. Напишите уравнение реакции получения бутадиена-1,3 по методу С. В. Лебедева. В каких условиях протекает эта реакция?
- 2. Почему при дегидрировании бутана образуется не алкин или кумулен, а диеновый углеводород с сопряженными связями? Напишите уравнения реакций получения диенов дегидри-рованием н-бутана и 2-метилбутана.

Критерии оценивания:

Экспресс-опрос на лекции проводится путем письменных ответов на все ответы соответствующей лекции. Оценивание осуществляется по двухбальной системе: «не зачтено», «зачтено». Оценка «зачтено» выставляется в случае правильного ответа на все вопросы экспресс-опроса (допускается наличие неточностей в ответах не более чем в 50% вопросов). Время на прохождение экспресс-опроса — 5 минут; количество попыток прохождения экспресс-опроса — неограниченно.

Выполнение лабораторных заданий

Критерии оценивание

Оценивание каждого практического задания осуществляется по системе «зачтено» и «не зачтено»

В процессе оценивания учитываются отдельные критерии и их «весомость»

Критерии оценивания	Весомость, %
- выполнение всех пунктов задания	до 40
- проведение реакций и расчетов в соответствии с изложенной методикой	до 30
- получение корректных результатов экспериментальных исследований	до 20
- качественное оформление задания	до 10

Защита практических заданий не проводится.

Оценка «зачтено» выставляется, если набрано 75% и более.

2.3 Оценочные материалы для проведения промежуточного контроля

Вид промежуточной аттестации: экзамен

Условием допуска к промежуточной аттестации является получение по всем видам текущей аттестации (экспресс-опросы, практические задания) оценки «зачтено».

Экзамен проводится во втором семестре изучения дисциплины.

Технология проведения экзамена — устный экзамен путем ответа на 3 вопроса теоретической части дисциплины по темам соответствующего семестра.

Вопросы, выносимые на экзамен:

- 1. Классификация реакций органических соединений по механизму и по характеру химических превращений. Факторы, обуславливающие реакционноспособность молекулы.
- 2. Какие углеводороды получаются при действии металлического натрия на смесь, состоящую из йодистого этила и йодистого изопропила? Назовите полученные соединения по международной номенклатуре.
- 3. Напишите уравнения последовательных реакций получения сложного эфира, исходя из ацетилена и этилового спирта.
- 4. Напишите уравнения реакций нафталена с: а) азотной кислотой; б) водородом в присутствии никеля; в) окислителем. Назовите полученные соединения.
- 5. Алканы. Номенклатура. Изомерия. Способы получения. Физические и химические свойства.
- 6. Какие соединения называются изомерами? Напишите изомеры состава C4H9Br и назовите их по международной номенклатуре.
- 7. Напишите все необходимые уравнения реакций для получения сложного эфира, исходя из пропаналя и пропанола.
- 8. Напишите структурные формулы изомерных ароматических соединений состава С8Н10. Назовите их. Укажите, из каких изомеров можно получить фталевые кислоты. Напишите уравнения реакций их получения.
- 9. Оксосоединения. Номенклатура. Изомерия. Способы получения. Физические свойства. Общие химические свойства карбонильных соединений.
- 10. Напишите уравнения реакций окисления толуола, этилбензола и орто-ксилола, назовите полученные вещества и напишите для них уравнения реакций нейтрализации гидратом окиси кальция.
- 11. Аминокислоты. Химические свойства аминокислот.
- 12. Напишите уравнение реакций, протекающих при действии металлического натрия на смесь, состоящую из 1-йодпропана и 2-йод-3-метилбутана (реакция Вюрца). Назовите полученные соединения по международной номенклатуре.
- 13. Что представляют собой жиры? К какому классу соединений они относятся? От какого компонента зависит консистенция жира? Напишите реакцию получения твердого жира из жидкого.
- 14. Напишите реакции получения бензола из: а) циклогексана; б) ацетилена. Напишите реакции нитрования и хлорирования бензола. Назовите полученные соединения.

- 15. Одноосновные карбоновые кислоты. Номенклатура. Изомерия. Способы получения.
- 16. Физические и химические свойства. Механизм реакции этерификации.
- 17. Напишите уравнения реакций гидролиза, гидрогенизации и омыления непредельного триглицирида.
- 18. Какие углеводороды получаются при действии металлического натрия на смесь галогенопроизводных: а) хлорбензола и хлористого этила; б) бромбензола и бромистого изопропила; в) пара-бромтолуола и бромистого метила.
- 19. Простые эфиры. Номенклатура. Изомерия. Способы получения. Физические и химические свойства.
- 20. Из каких галогенопроизводных при действии на них металлического натрия можно получить следующие углеводороды: 2-метилбутан; 2.2-диметилпропан? Напишите соответствующие уравнения реакций.
- 21. Что представляют природные жиры? Приведите реакции, характеризующие непредельность жиров и их химическую природу.
- 22. Напишите уравнения реакций: а) сульфирования этилбензола; б) нитрования бензойного альдегида; в) хлорирования бензолсульфокислоты. Назовите все полученные соединения.
- 23. Одноатомные спирты. Номенклатура. Изомерия. Способы получения. Физические и химические свойства.
- 24. Напишите структурные формулы следующих соединений: 2,3,4-трихлорпентан; 3,3-диэтилпентан; 2,2-диметилпропан; 2,2,3,3-тетраметилпентан.
- 25. Напишите реакции окисления и восстановления D—глюкозы и D-галактозы.
- 26. Какой из изомерных ксилолов при окислении образует терефталевую кислоту? Напишите реакции взаимодействия терефталевой кислоты с: а) пропиловым спиртом в присутствии концентрированной серной кислоты; б) едким натром. Назовите полученные соединения.
- 27. Особенности органических соединений. Виды химических связей в молекулах органических соединений: sp3-, sp2-, и sp-гибридизация. Теория химического строения органических соединений А.М. Бутлерова.
- 28. Напишите структурные формулы следующих соединений: 2,3,4-трихлорпентан; 3,3-диэтилпентан; 2,2-диметилпропан; 2,2,3,3-тетраметилпентан.
- 29. Напишите уравнения реакций получения триглицеридов: а) бутиропаль-митостеарина; б) триолеина. Чем они отличаются друг от друга по химическим и физическим свойствам?
- 30. Напишите уравнения следующих реакций для толуола: а) окисления;
- 31. б) нитрования; в) хлорирования в ядро и в боковую цепь. Укажите, в каких условиях протекают эти реакции. Назовите полученные соединения.
- 32. Галогенопроизводные. Номенклатура. Изомерия. Способы получения. Физические и химические свойства. Влияние углеводородного радикала на реакционноспособность галогенопроизводных.
- 33. Какие соединения называются изомерами? Напишите изомеры состава С4Н9Вг и назовите их по международной номенклатуре.

Контрольный вопрос

- 34. Напишите уравнения последовательных реакций получения сложного эфира, исходя из ацетилена и этилового спирта.
- 35. Напишите реакции окисления глюкозы до сахарной кислоты, а галактозы до галактоновой.
- 36. Оксосоединения. Индивидуальные различия в химических свойствах карбонильных соединений.
- 37. Напишите уравнения реакций получения 1-бутена из 1-бутина и из 1-бутанола. Приведите реакции 1-бутена с: а) бромистым водородом; б) водой.
- 38. Какой гидроксил в углеводах называется полуацетальным? Какими свойствами обладают углеводы, содержащие этот гидроксил? Напишите формулы мальтозы и сахарозы и объясните уравнениями реакции разницу в их свойствах.
- 39. Напишите формулы изомерных ароматических оксисоединений состава С7Н8О и назовите их.
- 40. Ароматические углеводороды с одним бензоловым ядром. Формула Кекуле и современные представления о строении бензола. Номенклатура. Изомерия. Способы получения. Физические и химические свойства. Правила замещения в бензоловом ядре. Заместители первого и второго рода.
- 41. Напишите уравнения реакций одной молекулы бромистого водорода со следующими веществами: а) 3,3-диметил-1-пентеном; б) 1,3-бутадиеном;
- 42. в) 3,3,4-триметил-1-гексеном. Назовите полученные соединения по международной номенклатуре.
- 43. Напишите реакции окисления глюкозы до сахарной кислоты, а галактозы до галактоновой.
- 44. Напишите уравнения реакций получения из изопропилбензола дифенилового эфира по схеме: изопропилбензол → фенол → фенолят → дифениловый эфир.
- 45. Алкены. Номенклатура. Изомерия. Способы получения. Физические и химические свойства. Правило Марковникова и пероксидный эффект Караша.
- 46. Какой углеводород получится при действии спиртового раствора едкой щелочи на 2-бром-2-метилбутан? Назовите полученный углеводород по международной номенклатуре и напишите для него уравнения реакций: а) с хлористым водородом; б) окисления; в) с водой (в присутствии серной кислоты). Назовите полученные вещества по международной номенклатуре.
- 47. Напишите схему кислотного гидролиза крахмала. Из продуктов гидролиза получите мальтобионовую и глюконовую кислоты.

Каждый экзаменационный билет содержит 5 вопросов. Время подготовки к ответу не менее 45 минут.

Критерии оценивания:

Оценивание осуществляется по четырёхбалльной системе.

«5» (отлично): получены ответы на все вопросы экзаменационного билета, студент четко и без ошибок ответил на все дополнительные вопросы по тематике экзаменационного билета.

«4» (хорошо): получены ответы на все вопросы экзаменационного билета; студент ответил на все дополнительные вопросы по тематике экзаменационного билета.

- «З» (удовлетворительно): получены ответы на 2 или 3 вопроса экзаменационного билета с замечаниями; студент ответил не менее чем на 50% дополнительных вопросов по тематике экзаменационного билета.
- \ll 2» (не зачтено): получены ответы менее чем на 2 вопроса экзаменационного билета, студент ответил менее чем на 50% дополнительных вопросов по тематике экзаменационного билета.

В процентном соотношении оценки (по четырёхбалльной системе) выставляются в следующих диапазонах:

 $<\!<\!$ инеудовлетворительно $>\!-$ менее 59% $<\!<\!$ удовлетворительно $>\!-$ 60% - 74% $<\!<\!$ $<\!$ \sim 00% - 00% - 00% - 00%