Приложение к рабочей программе дисциплины Сопротивление материалов

Направление подготовки –15.03.02 Технологические машины и оборудование Направленность (профиль) – Инжиниринг промышленного оборудования и производства Учебный план 2021 года разработки

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1 Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине – совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения, а также уровня сформированности всех компетенций (или их частей), закрепленных за дисциплиной. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формированием компетенций, определенных в ФГОС ВО;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/ корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение в образовательный процесс университета инновационных методов обучения.

2 Структура ФОС и применяемые методы оценки полученных знаний

2.1 Общие сведения о ФОС

ФОС позволяет оценить освоение всех указанных в рабочей программе дескрипторов компетенции, установленных ОПОП. В качестве методов оценивания применяются: наблюдение за работой, наблюдение за действиями в смоделированных условиях, применение активных методов обучения, экспресс-тестирование, программированные тесты. Структурными элементами ФОС по дисциплине являются: входной контроль (при наличии) (предназначается для определения уровня входных знаний), ФОС для проведения текущего контроля, состоящие из устных, письменных заданий, тестов, и шкалу оценивания, ФОС для проведения промежуточной аттестации, состоящий из устных, письменных заданий, и других контрольно-измерительные материалов, описывающих показатели, критерии и шкалу оценивания.

Применяемые методы оценки полученных знаний по разделам дисциплины

	Текущая аттестация (количество заданий, работ)			
Раздел	Экспресс опрос на	Защита отчетов по	Выполнение	Промежуточная
1 аздел	лекциях по текущей	лабораторным	практических	аттестация
	теме	работам	заданий	
Тема 1. Растяжение и сжатие	+	_	+	зачет
Тема 2. Кручение	+	_	+	зачет
Тема 3. Поперечный изгиб балок	+	_	+	зачет
Тема 4. Геометрическое				DIGONALI
характеристики плоских сечений	+	+	+	экзамен
Тема 5. Интеграл Мора. Метод	+	+	1	DICTORNALI
Верещагина	+	Ŧ	Ŧ	экзамен
Тема 6. Динамическое действие				
нагрузок. Циклически изменяющие	+	+ +	+	экзамен
нагрузки и напряжений				

Экспресс опрос на лекциях по текущей теме

Тема 1. Растяжение и сжатие

Лекция 1. Основные понятия сопротивлении материала. Метод РОЗУ. Внутренние пы. Механическое напряжение.

силы. Механическое напряжение.
Контрольный вопрос
1. Какие силы называются внешними?
2. Что такое метод сечений?
3. Классификация основных видов напряженно-деформированного состояния материала.

Лекция 2-3. Растяжение и сжатие. Эпюры нормальных усилий и напряжений. Определение деформаций, модуль упругости Е и коэффициент Пуассона □. Закон Гука.

определение деформации, модуль упругости и и коэффициент тгучесона закон г ука:		
Контрольный вопрос		
1. Что называется напряжением в теле?		
2. Что понимают под полным напряжением в теле?		
3. Что понимают под нормальным напряжением в теле?		
4. Что понимают под касательным напряжением в теле?		
5. Перечислите виды деформации тела		
6. При каком нагружении стержень испытывает деформацию растяжения?		
7. Алгоритм построения эпюры продольных сил		

Лекция 4. Учёт собственного веса материала. Учет собственного веса, определение деформации стержня с учётом собственного веса. Стержень равного сопротивления, формула Эйлера.

	Контрольный вопрос
1.	Какой вид будет иметь закон Гука для растянутого стержня?
2.	Что называется коэффициентом поперечной деформации (коэффициентом Пуассона) и в каких пределах он
	изменяется?

Лекция 5-6. Статически неопределимые стержневые системы. Основные случаи и способы раскрытия статистической неопределимости.

	Контрольный вопрос		
1.	Что понимают под коэффициентом запаса прочности?		
2.	Какие виды расчетов выполняют по условиям прочности?		

Лекция 7. Основы сложного напряженного состояния материала. Главные напряжения, плоское и объёмное состояние материала. Определение напряжений в наклонных сечениях. Главные напряжения.

Контрольный вопрос	
1. Как определяются главные напряжения, плоское и объёмное состояние материала.	
2. Определение напряжений в наклонных сечениях.	
3. Определение главных напряжений.	

Тема 2. Кручение

Лекция 8-9. Плоское напряжённое состояние. Сдвиг и кручение. Кручение валов круглого поперечного сечения. Построение эпюр крутящих моментов. Определение касательных напряжений в сечении вала. Расчет вала на прочность и жесткость.

Контрольный вопрос		
1. Обобщенный закон Гука		
2. Относительное изменение объёма материала		
3. Значение коэффициента Пуассона μ.		

Лекция 10-11. Расчёт винтовых пружин. Расчет винтовых пружин с малым шагом. Расчет на прочность. Определение деформации и жесткости пружины.

Контрольный вопрос

- 1. Расчет винтовых пружин с малым шагом.
- 2. Расчет на прочность. Определение деформации и жесткости пружины.

Тема 3. Поперечный изгиб балок

Лекция 12-13. Чистый и поперечный изгиб. Поперечный изгиб балок. Внутренние силовые факторы в сечении балки. Построение эпюр поперечных сил и изгибающих моментов.

Контрольный вопрос

- 1. Поперечный изгиб балок.
- 2. Внутренние силовые факторы в сечении балки.

Лекция 14-15. Дифференциальные зависимости между силовыми факторами в сечении балки. Использование этих зависимостей для контроля правильности построения эпюр.

Контрольный вопрос

- 1. Правило знаков при изгибе.
- 2. Дифференциальные зависимости между силовыми факторами в сечении балки.

Лекция 16. Расчет балки на изгиб.

Контрольный вопрос

- 1. Что называется поперечным изгибом?
- 2. Формула Журавского

Тема 4. Геометрические характеристики плоских сечений

Лекция 17-18. Геометрические характеристики плоских сечений. Статические моменты плоских сечений, момент инерции, радиус инерции, момент сопротивления сечения.

Контрольный вопрос

- 1. Геометрические характеристики плоских сечений..
- 2. Теорема о взаимности работ и перемещений для внутренних и внешних сил.

Лекция 19. Определение статических моментов инерции и координат центра тяжести составных сечений. Определение главных центральных моментов инерции составных сечений.

Контрольный вопрос

- 1. Моменты инерции.
- 2. Методы определения центра тяжести.
- 3. Центральные моменты инерции

Тема 5. Интеграл Мора. Метод Верещагина

Лекция 20. Определение перемещений в статически определимых системах при упругом изгибе.

Контрольный вопрос

- 1. Для чего используют метод Мора?
- 2. Алгоритм определения перемещения с помощью интеграла Мора

Лекция 21-22. Раскрытие статической неопределимости применением интеграла Мора, способа Верещагина и теоремы Кастильяно. Теорема о трёх моментах.

Контрольный вопрос

- 1. Способа Верещагина и теоремы Кастильяно.
- 2. Теорема о трёх моментах.

Тема 6. Динамическое действие нагрузок. Циклически изменяющиеся нагрузки и напряжения Лекция 23-24. Динамическое действие нагрузок. Циклически изменяющиеся нагрузки и напряжения. Понятие о характеристике цикла выносливости материала и расчёте на прочность при циклически действующих нагрузках.

Контрольный вопрос		
1. Динамическое действие нагрузок		
2. Понятие о характеристике цикла выносливости материала и расчёте на прочность.		

Лекция 25. Критерии выносливости и усталостной прочности материала.

	Контрольный вопрос		
1.	. Перечислите критерии выносливости		
2.	. Критерии усталостной прочности материала		

Критерии оценивания:

Экспресс-опрос на лекции проводится путем письменных ответов на все ответы соответствующей лекции. Оценивание осуществляется по двухбальной системе: «не зачтено», «зачтено». Оценка «зачтено» выставляется в случае правильного ответа на все вопросы экспресс-опроса (допускается наличие неточностей в ответах не более чем в 50% вопросов). Время на прохождение экспресс-опроса – 5 минут; количество попыток прохождения экспресс-опроса – неограниченно.

Выполнение практических заданий

Критерии оценивание

Оценивание осуществляется по четырёхбальной системе.

В процессе оценивания учитываются отдельные критерии и их «весомость»

Критерии оценивания	Весомость, %
- выполнение всех пунктов задания	до 30
- качественное оформление практического задания	до 30
- точность и правильность выполнения практического задания	до 40

Защита практических заданий не проводится.

В процентном соотношении оценки (по четырехбальной системе) выставляются в следующих диапазонах:

«неудовлетворительно» («не зачтено») — менее 70% «удовлетворительно» («зачтено») — 71-80% «хорошо» («зачтено») — 81-90% «отлично» («зачтено») — 91-100%

Защита отчетов по лабораторным работам

Критерии оценивание

Оценивание каждой лабораторной работы осуществляется по системе «зачтено» и «не зачтено».

В процессе оценивания учитываются отдельные критерии и их «весомость»

Критерии оценивания	Весомость, %
- выполнение всех пунктов задания	до 30
- степень соответствия выполненного задания поставленным требованиям	до 20
- получение корректных результатов работы	до 20
- качественное оформление работы	до 5
- корректные ответы на вопросы по сути работы (защита лабораторной работы)	до 25

Оценка «зачтено» выставляется, если набрано более 75%.

Перечень контрольных вопросов, задаваемых при защите отчетов по лабораторным работам

Тема 4. Геометрические характеристики плоских сечений

Лабораторная работа №1. Введение в лабораторный практикум. Инструктаж по ТБ. Общие требования к выполнению лабораторных работ. Определение механических характеристик при растяжении до разрушения стального образца.

Контрольный вопрос

- 1. Какие напряжения возникают при растяжении и как они располагаются?
- 2. Какие характеристики материала определяют при его испытании на растяжении?
- 3. Как вычисляется предел прочности при растяжении?
- 4. В каких случаях деталь работает на растяжение?

Лабораторная работа №2. Испытание чугуна на сжатие, испытание стали на срез.

Контрольный вопрос

- 1. Какие напряжения возникают при срезе и как они располагаются?
- 2. Какие характеристики материала определяют при его испытании на срез?
- 3. Как вычисляется предел прочности при срезе?
- 4. В каких случаях деталь работает на срез?

Тема 5. Интеграл Мора. Метод Верещагина

Лабораторная работа №3. Определение модуля сдвига и зависимости угла поворота от крутящегося момента.

Контрольный вопрос

- 1. Какое свойство материала характеризует модуль сдвига?
- 2. Во сколько раз изменится величина угла поворота сечений, если диаметр вала увеличить вдвое, втрое?
- 3. Как зависит величина угла поворота сечения вала от расстояния до защемленного сечения?
- 4. Эпюра распределения касательных напряжений по сечению вала

Лабораторная работа №4 Определение характеристики винтовой, цилиндрической пружины.

Контрольный вопрос

- 1. Основные параметры витых пружин
- 2. По какой формуле вычисляют осадку (деформацию) цилиндрической винтовой пружины?
- 3. Как изменится величина осадки пружины при данной нагрузке, если диаметр проволоки увеличить в два раза
- 4. Какая зависимость существует между осевой нагрузкой и осадкой цилиндрической винтовой пружины
- 5. Как различить пружины, работающие на растяжение и сжатие

Лабораторная работа №5. Сложное сопротивление, определение прогибов при косом изгибе.

Контрольный вопрос

- 1. Какой изгиб называется чистым, а какой поперечным
- 2. В чем состоит принцип суперпозиции при исследовании косого изгиба?
- 3. В чем принцип применяемости закона Гука для сложного деформированного состояния системы?

Тема 6. Динамическое действие нагрузок. Циклически изменяющиеся нагрузки и напряжения

Лабораторная работа №6. Определение реакций в опоре статически неопределимой балки

Контрольный вопрос

- 1. Какие системы называются статически неопределимыми?
- 2. Что такое дополнительная или «лишняя» связь?
- 3. В чем состоит суть раскрытия статической неопределимости?

- 4. Какие способы определения перемещений сечений балки Вы знаете?
- 5. Как определяется величина площади с эпюры изгибающих моментов и ее знак?

2.4 Оценочные материалы для проведения промежуточной аттестации

Вид промежуточной аттестации: зачет

Зачет проводится в первом семестре изучения дисциплины.

Оценивание осуществляется по двухбальной системе.

Критерии оценивания

Промежуточная аттестация считается пройденной (получена оценка «зачтено») если все виды текущей аттестации (экспресс-опросы, практические задания) выполнены на оценку «зачтено».

2.3 Оценочные материалы для проведения промежуточного контроля

Вид промежуточной аттестации: экзамен

Условием допуска к промежуточной аттестации является получение по всем видам текущей аттестации (экспресс-опросы, практические задания, защита отчетов по лабораторным работам) оценки «зачтено».

Экзамен проводится во втором семестре изучения дисциплины.

Технология проведения экзамена — устный экзамен путем ответа на 3 вопроса теоретической части дисциплины по темам соответствующего семестра.

Вопросы, выносимые на экзамен:

Контрольный вопрос

- 1. Наука о сопротивление материалов. Прочность конструкции. Жесткость элемента конструкции
- 2. Расчетная схема сооружения. Принцип независимости действия сил. Внутренние и внешние силы
- 3. Брус, стержень, оболочка, массивное тело. Основные типы опор
- 4. Виды деформаций
- 5. Растяжение и сжатие: общие сведения
- 6. Закон Гука для растянутого стержня. Условие прочности и жесткости для растянутого стержня
- 7. Коэффициент поперечной деформации (коэффициентом Пуассона), пределы измерения коэффициента Пуассона
- 8. Коэффициент запаса прочности. Виды расчетов по условиям прочности
- 9. Статически неопределимые системы: общие сведения, «лишние» связи
- 10. План решения статически неопределимых задач при растяжении-сжатии
- 11. Понятие о главных напряжениях
- 12. Сдвиг. Чистый сдвиг. Закон Гука при сдвиге
- 13. Порядок расчета болтовых соединений на срез и на смятие
- 14. Порядок расчета сварных соединений на срез и на смятие
- 15. Кручение. Стержень, работающий на кручение. Правило определения знаков крутящих моментов
- 16. Напряжения и деформации при кручении вала. Правила определения моментов сопротивления
- 17. Условия прочности и жесткости при кручении
- 18. Прямой изгиб. Чистый изгиб
- 19. Правила знаков приняты для поперечной силы и изгибающего момента
- 20. Эпюры поперечных сил и изгибающих моментов
- 21. Чистый изгиб: общие сведения
- 22. Условия прочности при изгибе
- 23. Поперечный изгиб: общие сведения
- 24. Формула Журавского

- 25. Касательные напряжения в балках различного сечения
- 26. Потенциальная энергия деформации системы
- 27. Обобщенные силы и обобщенные перемещения
- 28. Интеграла Мора
- 29. Порядок определения перемещения с помощью интеграла Мора
- 30. Метод взятия интеграла способом Верещагина

Время подготовки к ответу не менее 45 минут.

Критерии оценивания:

Оценивание осуществляется по четырёхбальной системе.

- «5» (отлично): получены ответы на все вопросы экзаменационного билета, студент четко и без ошибок ответил на все дополнительные вопросы по тематики экзаменационного билета.
- «4» (хорошо): получены ответы на все вопросы экзаменационного билета; студент ответил на все дополнительные вопросы по тематики экзаменационного билета.
- «3» (удовлетворительно): получены ответы на 2 или 3 вопроса экзаменационного билета с замечаниями; студент ответил не менее чем на 50% дополнительных вопросов по тематики экзаменационного билета.
- «2» (не удовлетворительно): получены ответы менее чем на 2 вопроса экзаменационного билета, студент ответил менее чем на 50% дополнительных вопросов по тематики экзаменационного билета.