ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» СУДОМЕХАНИЧЕСКИЙ ТЕХНИКУМ

Приложение к рабочей программе дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

ЕН.01. Математика

специальности: 26.02.02 Судостроение

Учебный план 2023 года разработки.

Керчь

1. Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине ЕН.01.Математика для студентов специальности 26.02.02 Судостроение — это совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/корректирующих мероприятий;
 - самоподготовка и самоконтроль обучающихся в процессе обучения.

2. Структура ФОС и применяемые методы оценки полученных знаний

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, устных опросов, текущего тематического тестирования, а также выполнения обучающимися домашних заданий

Материал считается усвоенным:

- с оценкой **«отлично»**, если курсант безошибочно выполняет 90-100% заданий работы;
- с оценкой **«хорошо»**, если в работе выполнено правильно от 70% заданий и выше с незначительными ошибками;
 - с оценкой **«удовлетворительно»**, если решено правильно от 50 % до 60% заданий

Применяемые методы оценки полученных знаний по разделам дисциплины

Раздел	Экспресс опрос на лекциях по текущей теме (экспресстестирование)	Математи ческий диктант	Письмен- ная работа по теме	Итоговый тест	Промежуточная аттестация
Раздел 1. Основы линейной алгебры	+		+	+	экзамен
Раздел 2. Основы теории комплексных чисел	+	+	+	+	экзамен
Раздел 3. Математический анализ	+	+	+	+	экзамен
Раздел 4.	+				экзамен

Основы дискретной				
математики				
Раздел 5.	+	+	+	экзамен
Основы теории				
вероятностей и				
математической				
статистики				

Входное тестирование

Критерий оценивания: за каждый правильный ответ дается 1 балл. Если студент набрал менее 5 баллов - оценка «неудовлетворительно», 5 баллов - «удовлетворительно», 6,7 баллов - «хорошо», 8 баллов - «отлично».

			ВАРИА	AHT 1		
1.	Вычислить:	$\sqrt{125} \cdot \sqrt[5]{32} - 5^{\frac{1}{2}}$				
A	Б	В		Γ		Д
11 \	5	$10\sqrt{2}-\sqrt{5}$	9	$9\sqrt{5}$	5	$\sqrt[10]{4000} - \sqrt{5}$
		$\sin 45^{\circ} \cos 15^{\circ}$ -	$-\cos 45^{\circ}$ si	15^{0}		
2.	Вычислить:	$\frac{2\sin 15^{\circ}}{}$				
A	Б	В		Γ		Д
1	1/2	1	$\sqrt{3}/2$	1/	3	$\sqrt{3}$
3.		эчку, через кот				ии: v=2 ^x +1
A	Б	В		Γ	. 13	J
M(3)	3;7)	N(3;9)	K(4;	8)	P(4;9)	
4.	Найти облас	сть определени	ія функці	ии: y= lg(16	$5-x^2$)	
A		Б	В		Γ	
	(-2) $(-2;4)$	* ' '		(-4;4)	(-4	$4;\infty)$
5.	Вычислить:	$2 \log_5 25 + 3\log_5 25 + 3\log_5 25 + \log_5 25$			_	
A		Б	В		Γ	
8	D	12	18		22	
6.	Решить уран	внение: tg5x=-	·1 B		Γ	
A (1)	$^{n}\pi/3+2\pi n$	Б $(-1)^n 2\pi$		$-\pi/20+\pi n/3$		$\pi/20 + \pi n/5, n \in \mathbb{Z}$
(-1)	11/3+2111	, ,	$2x^4 - 3x^2 -$) 31	"\20±\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7.	Вычислить	предел: $\lim_{x\to\infty}\frac{1}{x}$	$\frac{2x-5x-5}{3x^4-5x}$	<u>-1</u>		
A	Б	В		Γ		Д
2	3		/3	3/2		-2/3
8. TO 41	Найти перв ку М: f(x)=x ³		ункции f	(х), график	которой	проходит через
A		Б		В	Γ	
1/4x	$x^2 + 2x + 7$	$x^4 + 2x + 15$	$x^4 + 2$	x-15	другой (ответ

ВАРИАНТ 2

1. Вычислить: $0,1 \cdot \sqrt{20} : \sqrt{45} - 5\frac{17}{30}$

A Б B Г Д

-2,5 -5,5 -10 0 другой ответ

2. Упростить: $\frac{\cos 4\alpha}{\cos 2\alpha - \sin 2\alpha}$

A B Γ \mathcal{A} \mathcal{A}

 $2\sin 2\alpha$ $2\cos 2\alpha$ $\cos 2\alpha + \sin 2\alpha$ $\cos 2\alpha - \sin 2\alpha$ $\sin 2\alpha - \cos 2\alpha$

3. Выберите точку, через которую проходит график функции: $y=(1/3)^x-1$

А Б В Г

K(-3;-10) M(-3;8) N(-2;5) P(-2;8)

4. Найти область определения функции: $y = log_{1/3}(x^2-2x)$

A B B Γ (0;2) $(-\infty;0) \cup (2;\infty)$ $(-\infty;-2) \cup (0;\infty)$ (-2;0)

(0;2) $(-\infty;0) \cup (2;\infty)$ $(-\infty;-2) \cup (0;\infty)$ (-2;0) **5.** Вычислить: $3 \log_7 49 - 5 \log_2 16$

-26 -14 14 26

6. Решить уравнение: $\sin x/2 = \sqrt{3}/2$

A B Γ

 $(-1)^n \pi/3 + 2\pi n$ $(-1)^n 2\pi/3 + 2\pi n$ $-\pi/20 + \pi n/5$ $3\pi/20 + \pi n/5$, $n \in \mathbb{Z}$

7. Вычислить предел: $\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}$

8. Найти первообразную функции f(x), график которой проходит через точку M: $f(x)=4x+1/x^2$, M(1;4)

В Г

 $4x^2+1/x+4$ $2x^2-1/x+1$ $2x^2+1/x+4$ другой ответ

Ответы на тест

Вариант 1

1	2	3	4	5	6	7	8
Γ	a	б	В	Γ	В	В	a

Вариант 2

1	2	3	4	5	6	7	8
б	В	Г	б	б	б	б	Γ

Оценочные материалы для проведения текущего контроля.

Экспресс опрос на лекциях по текущей теме (экспресс-тестирование). Критерий оценивания: если студент выполняет 100% заданий, работа оценивается с оценкой «отлично», 70% - 90% - «хорошо», 50%-60% - «удовлетворительно».

Вопросы	Рекомендуемое содержание ответа
r	(источник)
	()
Раздел 1. Основы	линейной алгебры
1. Дать определение матрицы.	Конспект лекций по дисциплине Математика
2. Назовите основные типы матриц.3. Какие основные алгебраические	для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост.
3. Какие основные алгебраические операции производят с матрицами.	И.А. Драчева – Керчь, 2023, с. 64.
4. Как вычислить определители второго и	Практикум по дисциплине Математика для
третьего порядка?	студентов 2 курса очной формы обучения
	специальности 26.02.02 Судостроение / сост.
	И.А. Драчева – Керчь, 2021, с.88.
5. Дать определение минора и	Конспект лекций по дисциплине Математика
алгебраического дополнения.	для студентов 2 курса очной формы обучения
6. Дать определение обратной матрицы.	специальности 26.02.02 Судостроение/ сост.
	И.А. Драчева – Керчь, 2023, с. 64.
7. Как найти обратную матрицу.	Практикум по дисциплине Математика для
8. В чем заключается метод Крамера? 9. Можно ли решить систему уравнений	студентов 2 курса очной формы обучения
методом Крамера или матричным методом,	специальности 26.02.02 Судостроение / сост.
если определитель равен нулю?	И.А. Драчева – Керчь, 2021, с.88.
10. В чем заключается суть метода Гаусса?	
11. Какая система называется	
неопределенной, определенной,	
совместной и несовместной?	
12. Как с помощью метода Гаусса можно	
исследовать систему?	
	ии комплексных чисел
1. Что такое мнимая единица?	Конспект лекций по дисциплине Математика
2. Как изображается комплексное число?	для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост.
2. Как изооражается комплексное число?	И.А. Драчева – Керчь, 2023, с. 64.
3. Какие комплексные числа называются	
сопряженными?	

	Практикум по дисциплине Математика для			
4. Какие формы комплексных чисел существуют?	студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение / сост.			
5. Как складываются комплексные числа?	И.А. Драчева – Керчь, 2021, с.88.			
6. Как умножить два комплексных числа?				
7. Как разделить два комплексных числа?				
8. Напишите формулу Муавра.				
Раздел 3. Матема	тический анализ			
Тема 3.1 Дифференц	иальное исчисление			
1. Дайте определение функции.	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения			
2. Что такое область определения и	специальности 26.02.02 Судостроение/ сост.			
множество значений функции?	И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для			
3. Какие функции называются	студентов 2 курса очной формы обучения			
возрастающими, убывающими,	специальности 26.02.02 Судостроение / сост.			
монотонными?	И.А. Драчева – Керчь, 2021, с.88.			
4. Какие функции называются периодическими?				
5. Назовите элементарные функции, приведите их графики.				
6. Дайте определение предела функции.	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения			
7. Какие функции называются бесконечно малыми, какие бесконечно большими?	специальности 26.02.02 Судостроение/ сост. И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для студентов 2 курса очной формы обучения			
8. Какие виды неопределенности вы знаете?	специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.			
9. Как раскрываются неопределенности $\frac{\infty}{\infty}$ и $\frac{0}{0}$?				
10. Напишите формулы первого замечательного предела.				
11. Напишите формулу второго				
замечательного предела.	Tr			
12. Что такое производная функции?	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения			
13. Рассказать правила	специальности 26.02.02 Судостроение/ сост.			
дифференцирования и таблицу производных. 14. Рассказать таблицу производных.				

15. Рассказать правило нахождения производной сложной функции.	Практикум по дисциплине Математика для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.	
16. Какие точки называются точками экстремума функции?	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост.	
17. Как найти экстремумы функции, интервалы возрастания, убывания?	И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для студентов 2 курса очной формы обучения	
18. Как найти точки перегиба, интервалы выпуклости, вогнутости графика функции?	специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.	
19. Приведите общую схему исследования функции и построения графика.		
	льное исчисление	
1. Что называется первообразной?	Конспект лекций по дисциплине Математика	
2. Дайте определение неопределенного интеграла.	для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост.	
3. Перечислите свойства неопределенного интеграла.	И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для студентов 2 курса очной формы обучения	
4. Расскажите таблицу основных неопределенных интегралов.	специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.	
5. Какая геометрическая задача приводит к понятию определенного интеграла?		
6. Назовите основные свойства определенного интеграла.		
7. Напишите формулу Ньютона-Лейбница.		
8. Как найти площадь плоской фигуры с помощью определенного интеграла?		
9. Как вычислить объем тела вращения с помощью интеграла?		
Раздел 4. Основы дис	скретной математики	
1. Что такое множество?	Конспект лекций по дисциплине Математика	
2. Как обозначается принадлежность	для студентов 2 курса очной формы обучени	
элемента множеству?	специальности 26.02.02 Судостроение/ сост.	
3. Что такое мощность множества? 1. Что такое пустое множество и как оно	И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для	
1. Что такое пустое множество и как оно обозначается?	студентов 2 курса очной формы обучения	
 Назовите элементарные операции над множествами. 	36.02.02.6	
<u></u>	<u> </u>	

3. Расскажите принцип умножения			
комбинаторик.			
4. Что такое перестановки?			
5. Что такое размещения и сочетания?			
	стей и математической статистики		
	тия теории вероятностей		
 Дайте определение события. Какие события называются достоверными, невозможными, случайными? 	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост. И.А. Драчева – Керчь, 2023, с. 64. Практикум по дисциплине Математика для студентов 2 курса очной формы обучения		
3. Приведите формулу и свойства классической вероятности.	специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.		
4. Дайте определение суммы событий, произведения событий.			
5. Что такое условная вероятность?			
6. Сформулируйте теорему произведения			
вероятностей.			
Тема 5.2 Элементы математической статистики			
7. Дайте определение дискретной и непрерывной случайной величины. 8. Что называется законом распределения случайной величины?	Конспект лекций по дисциплине Математика для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение/ сост. И.А. Драчева – Керчь, 2023, с. 64.		
9. Дайте определение и формулу вычисления математического ожидания дискретной случайной величины.	Практикум по дисциплине Математика для студентов 2 курса очной формы обучения специальности 26.02.02 Судостроение / сост. И.А. Драчева – Керчь, 2021, с.88.		
10. Дайте определение и формулу вычисления дисперсии случайной величины.	тап дра 1884 — 160р 18, 2021, 0.00.		
11. Дайте определение генеральной и выборочной совокупности.			
12. Дайте определение вариационного ряда и приведите технику его построения.			
13. Что такое полигон и гистограмма частот?			

Математический диктант

Критерий оценивания: если студент выполняет 100% заданий, работа оценивается с оценкой «отлично», 70% - 90% - «хорошо», 50%-60% - «удовлетворительно».

Вопросы	Ответы				
Раздел 2. Основы теории комплексных чисел					
1. Чему равно i^2	-1				

2. Вычислить $\frac{2}{i}$	-2i
3. Написать тригонометрическую форму числа $z = 2i$	$z = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
4. Вычислить $-5 + 2i - 3i^3$	-5+5i
5. Написать тригонометрическую форму числа $z = 1 + i$	$z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$
6. Напишите число, сопряженное числу $z = -3 + 2i$	z = -3 - 2i
Раздел 3. Математический анализ	
Тема 3.1 Дифференциальное исчисление	
Найти производную функции 1. $y = -3x^2$	-6x
$2. y = 2\sqrt{x}$	1
$y = 2\sqrt{x}$	$\frac{1}{\sqrt{x}}$
3. $y = 3^x$	$3^x \ln 3$
$4. y = \sin x$	cosx
$5. y = \cos x$	$-\sin x$
$6. y = \ln x$	1
2	<u>x</u>
7. $y = 3x^3 - 4x + 5$	$9x^2 - 4$
$8. y = \sin 3x$	$3\cos 3x$
$9. y = e^{-2x}$	$-2e-2^x$
$10. \ y = \sin^2 x$	$2\sin x \cdot \cos x$
Тема 3.2 Интегральное исчисление	
Написать табличные интегралы:	
1. $\int \frac{1}{x} dx$	$\ln x + C$
$2. \int e^x dx$	$e^x + C$
3. $\int \sin x dx$	$-\cos x + C$
$4. \int \cos x dx$	$\sin x + C$
$5. \int x^n dx$	$\frac{x^{n+1}}{n+1} + C$
6. $\int a^x dx$	$\frac{a^x}{\ln a} + C$
	ши

$7. \int \frac{1}{1+x^2} dx$	arctgx + C
$8. \int \frac{1}{\sqrt{1-x^2}} dx$	$\arcsin x + C$
$9. \int \frac{1}{\cos^2 x} dx$	tgx + C

Письменная работа по теме

Раздел 1. Основы линейной алгебры

Критерий оценивания: самостоятельная работа состоит из одного задания, решить систему линейных уравнений. Если студент решает систему тремя изученными методами, работа оценивается с оценкой «отлично»; двумя методами - оценка «хорошо», на оценку «удовлетворительно» достаточно решить одним методом, например, методом Крамера;

Письменная работа № 1	emino ognimi merogom, nampimep, merogom repumepu,
Задание	Решение и ответы
Вариант 1 Решить систему линейных	Находим определитель системы и вспомогательные определители:
уравнений	$\Delta A = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -3 & -2 \\ 1 & 1 & -1 \end{vmatrix} = 13.$
2x + y + z = 5	
$\begin{cases} 2x + y + z = 5 \\ x - 3y - 2z = 5 \\ x + y - z = 4. \end{cases}$	
(x+y-z=4.	$\Delta x = \begin{vmatrix} 5 & 1 & 1 \\ 5 & -3 & -2 \\ 4 & 1 & -1 \end{vmatrix} = 39; \ \Delta y = \begin{vmatrix} 2 & 5 & 1 \\ 1 & 5 & -2 \\ 1 & 4 & -1 \end{vmatrix} = 0;$
	2 1 5
	$\Delta z = \begin{vmatrix} 2 & 1 & 5 \\ 1 & -3 & 5 \\ 1 & 1 & 4 \end{vmatrix} = -13.$
	Находим неизвестные по формулам Крамера:
	$x = \frac{\Delta x}{\Delta A} = \frac{39}{13} = 3; y = \frac{\Delta y}{\Delta A} = \frac{0}{13} = 0;$
	$z = \frac{\Delta z}{\Delta A} = \frac{-13}{13} = -1.$
	Ответ: $x=3$, $y=0$, $z=-1$.
Вариант 2	Находим определитель системы и вспомогательные
Решить систему линейных	определители: 1
уравнений	$\Delta A = \begin{vmatrix} 2 & -4 & -3 \end{vmatrix} = -41$
	$\Delta A = \begin{vmatrix} 1 & 5 & 1 \\ 2 & -4 & -3 \\ 3 & 4 & 2 \end{vmatrix} = -41$

$$\begin{cases} x + 5y + z = 0 \\ 2x - 4y - 3z = -1. \\ 3x + 4y + 2z = 8 \end{cases} \qquad \Delta x = \begin{vmatrix} 0 & 5 & 1 \\ -1 & -4 & -3 \\ 8 & 4 & 2 \end{vmatrix} = -82;$$

$$\Delta y = \begin{vmatrix} 1 & 0 & 1 \\ 2 & -1 & -3 \\ 3 & 8 & 2 \end{vmatrix} = 41; \Delta z = \begin{vmatrix} 1 & 5 & 0 \\ 2 & -4 & -1 \\ 3 & 4 & 8 \end{vmatrix} = -123$$
По правилу Крамера: $x = \frac{\Delta x}{\Delta} = \frac{-82}{-41} = 2$,
$$y = \frac{\Delta y}{\Delta} = \frac{41}{-41} = -1, \quad z = \frac{\Delta z}{\Delta} = \frac{-123}{-41} = 3.$$
Ответ: $x = 2, y = -1, z = 3$.

Раздел 2. Основы теории комплексных чисел

Критерий оценивания: самостоятельная работа состоит из четырех заданий, выполнение первых двух оценивается как «удовлетворительно», первое, второе, третье -«хорошо», выполнение всей работы - «отлично».

Письменная работа № 2

Задание	Ответы
Вариант 1 1. Решить уравнения: a) $z^2 + 16 = 0$	1. a) $z = \pm 4i$
$6) z^2 + z + 1 = 0$	2. $z_1 + z_2 = 5 + i$
2. Даны комплексные числа $z_1 = 4 + 3i$ и	$z_1 \cdot z_2 = 10 - 5i$
$z_2 = 1 - 2i$. Изобразить их на комплексной	$z_1 = -2 + 11i$
плоскости, найти: $z_1 + z_2$; $z_1 \cdot z_2$; $\frac{z_1}{z_2}$.	$\frac{z_1}{z_2} = \frac{-2 + 11i}{5}$ 3. a) $z = -25,25 - 2i$ b) $z = -14i$
3. Вычислить a) $\frac{8-i}{4i} + (5i)^2$ b) $\begin{vmatrix} -2 & 3+i \\ 4i & 2+i \end{vmatrix}$	4. $z = 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$
4. Дано комплексное число, изобразить вектором на комплексной плоскости, записать в тригонометрической и показательной форме, вычислить z^5 . $z=2+\sqrt{12}i$	$z = 4e^{\frac{\pi}{3}i},$ $z^{5} = 4^{5}(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$
Вариант 2	1. a) $z = \pm 3i$
1. Решить уравнения: a) $z^2 + 9 = 0$ б) $2z^2 - 3z + 5 = 0$	6) $z = \frac{3 \pm \sqrt{31}i}{4}$ 2. $z_1 + z_2 = -4 - 2i$
	$z_1 \cdot z_2 = 11 + 10i$

2. Даны комплексные числа
$$z_1 = -3 + 2i$$
 и $z_2 = -1 - 4i$. Изобразить их на комплексной плоскости, найти: $z_1 + z_2$; $z_1 \cdot z_2$; $\frac{z_1}{z_2}$.

3. Вычислить a)
$$\frac{3+4i}{i} + \frac{4-i}{3+2i}$$
 b) $\begin{vmatrix} -3i & 5i \\ -1 & 2+i \end{vmatrix}$ 4. $z = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$

вычислить
$$z^5$$
. $z = -\frac{2}{i}$

$$\frac{z_1}{z_2} = \frac{-5 - 14i}{17}$$
3. a) $z = \frac{66 - 34i}{13}$ b) $z = 3 - i$
4. $z = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$

$$z = 2e^{\frac{\pi}{2}i},$$

$$z = 32(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}) = 32i$$

Раздел 3. Математического анализа

Тема 3.1 Дифференциальное исчисление

Критерий оценивания: самостоятельная работа по решению задач на пределы. Если решено два задания - «удовлетворительно», три задания - «хорошо», четыре задания -«отлично».

Письменн	Письменная работа № 3				
	Вариант 1	Вариант 2			
	ть пределы	Вычислить пределы			
	$\frac{-3x - 5x^2}{10x^2 + 3}$	1) $\lim_{x \to \infty} \frac{1 - 6x^3}{2x^3 + 3x^2 + 3}$			
	$\frac{x^2 + 3x}{x^2 + x - 6}$	$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2}$			
3) $\lim_{x \to 0} \frac{\sin}{x}$	$\frac{n}{3x}$	$ \begin{array}{l} x \to \infty 2x^{3} + 3x^{2} + 3 \\ 2) \lim_{x \to -2} \frac{x^{2} + 3x + 2}{x + 2} \\ 3) \lim_{x \to 0} \frac{\sin 5x}{10x} \end{array} $			
4) $\lim_{x \to 1}$	$\frac{x+3x^3}{x-1}$	$4) \lim_{x \to \infty} \frac{3}{x+9}$			

Решение и ответы.

Вариант 1.

1)
$$\lim_{x \to \infty} \frac{1 - 3x - 5x^2}{10x^2 + 3} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{3x}{x^2} - \frac{5x^2}{x^2}}{\frac{10x^2}{x^2} + \frac{3}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{3}{x} - 5}{10 + \frac{3}{x^2}} = \frac{0 - 0 - 5}{10 + 0} = -\frac{1}{2}$$

2)
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 + x - 6} = \lim_{x \to -3} \frac{x(x+3)}{(x+3)(x-2)} = \lim_{x \to -3} \frac{x}{x-2} = \frac{3}{5}$$

3)
$$\lim_{x\to 0} \frac{\sin 2x}{3x} = \lim_{x\to 0} \frac{2\sin 2x}{3 \cdot 2x} = \frac{2}{3} \lim_{x\to 0} \frac{\sin 2x}{2x} = \frac{2}{3}$$

4)
$$\lim_{x \to 1^{+}} \frac{x + 3x^{3}}{x - 1} = \frac{1 + 3}{1 - 1} = \frac{4}{+ 0} = +\infty$$

Вариант 2.

1)
$$\lim_{x \to \infty} \frac{1 - 6x^3}{2x^3 + 3x^2 + 3} = \lim_{x \to \infty} \frac{\frac{1}{x^3} - \frac{6x^3}{x^3}}{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{3}{x^3}} = \lim_{x \to \infty} \frac{\frac{1}{x^3} - 6}{2 + \frac{3}{x^3} + \frac{3}{x^3}} = \frac{0 - 6}{2 + 0 + 0} = -3$$

2)
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x + 1)}{x + 2} = \lim_{x \to -2} (x + 1) = -1$$

3)
$$\lim_{x \to 0} \frac{\sin 5x}{10x} = \lim_{x \to 0} \frac{\sin 5x}{2 \cdot 5x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin 5x}{5x} = \frac{1}{2}$$

4)
$$\lim_{x \to \infty} \frac{3}{x+9} = \frac{3}{\infty} = 0$$

Письменная работа № 4

Вариант 1.

1. Материальная точка движется прямолинейно по закону

$$x(t) = 6t^2 - 48t + 17$$

(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t = 9 с.

2. Найти экстремумы функции

$$y = \frac{x-3}{x^2 + 16}$$

Вариант 2.

1. Материальная точка движется прямолинейно по закону

$$x(t) = \frac{1}{2}t^3 - 3t^2 + 2t$$

(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени t = 6 с.

2. Найти экстремумы функции

$$y = 2x^2 - 5x + \ln x - 5$$

Критерий оценивания письменной работы № 4:

Все задания выполнены верно - оценка «отлично», допущены незначительные ошибки в вычислениях - оценка «хорошо», одно задание выполнено верно - оценка «удовлетворительно».

Решение и ответы:

Вариант 1.

1. Находим производную $v = x'(t) = (6t^2 - 48t + 17)' = 12t - 48$. Подставляем заданное время $v = 12 \cdot 9 - 48 = 60 \text{ m/c}$.

Ответ: 60

2. Находим производную

$$y' = \left(\frac{x-3}{x^2+16}\right)' = \frac{x^2+16-(x-3)\cdot 2x}{\left(x^2+16\right)^2} = \frac{-x^2+6x+16}{\left(x^2+16\right)^2}.$$

Решаем уравнение $\frac{-x^2+6x+16}{\left(x^2+16\right)^2}=0$. Получаем значения x=8 и x=-2.

Определяем знак производной в интервалах и поведение функции:

	(-∞;-2)	x = -2	(-2;8)	x=8	(8;+∞)
<i>y</i> '	-	0	+	0	-
У	Убывает	Точка min	возрастает	Точка тах	убывает

Ответ: x = -2 - точка минимума, x = 8 - точка максимума.

Вариант 2.

1. Находим производную $v = x'(t) = (\frac{1}{2}t^3 - 3t^2 + 2t)' = \frac{3}{2}t^2 - 6t + 2$. Подставляем заданное время $v = \frac{3}{2} \cdot 36 - 36 + 2 = 20 m/c$.

Ответ: 20

2. Находим производную
$$y' = (2x^2 - 5x + \ln x - 5)' = 4x - 5 + \frac{1}{x} = \frac{4x^2 - 5x + 1}{x}$$
.

Решаем уравнение $\frac{4x^2-5x+1}{x} = 0$. Получаем значения $x = \frac{1}{4}$ и x = 1.

Определяем знак производной в интервалах и поведение функции:

	$(0;\frac{1}{4})$	$x = \frac{1}{4}$	$(\frac{1}{4};1)$	x=1	(1;+∞)
<i>y'</i>	+	0	-	0	+
У	возрастает	Точка тах	Убывает	Точка тіп	возрастает

Ответ: x = 1 - точка минимума, $x = \frac{1}{4}$ - точка максимума.

Тема 3.2 Дифференциальное исчисление

Письменная работа № 5

Вариант 1

1. Найти неопределенный интеграл

a)
$$\int (2^x + \cos x) dx$$
 6) $\int (6x^2 - 4x + 3) dx$

2. Вычислить площади плоской фигуры, ограниченных линиями

$$y = -x^2 + 4, y = 0$$

3. Найти количество электричества, проходящего через поперечное сечение проводника за 20 с, если сила тока изменяется по закону I(t) = 2t + 1(A).

1. Найти неопределенный интеграл

a)
$$\int (\frac{1}{x} - \sin x) dx$$
 6) $\int (12x^5 - 3x^2 - 7) dx$

2. Вычислить площади плоских фигур, ограниченных линиями

$$y = x^2 + 2x + 5, y = 5 - 2x$$

3. Тело движется прямолинейно со скоростью v(t) (м/с). Вычислить расстояние, пройденное телом за интервал времени от t_1 до t_2 , если v(t)=5t-3, $t_1=0$, $t_2=3$.

Критерий оценивания письменной работы № 5:

Все задания выполнены верно - оценка «отлично»,

Выполнено два задания верно - оценка «хорошо», одно задание - оценка «удовлетворительно».

Решение и ответы.

Вариант 1.

1. a)
$$\int (2^{x} + \cos x) dx = \frac{2^{x}}{\ln 2} + \sin x + C$$

6)
$$\int (6x^{2} - 4x + 3) dx = 2x^{3} - 2x^{2} + 3x + C$$

2.
$$S = \int_{-2}^{2} (-x^2 + 4) dx = \left(-\frac{x^3}{3} + 4x \right) \Big|_{-2}^{2} = -\frac{8}{3} + 8 - \frac{8}{3} + 8 = \frac{32}{3} \kappa e.e \partial.$$

3.
$$Q = \int_{0}^{20} (2t+1)dt = (t^2+t)\Big|_{0}^{20} = 400 + 20 = 420$$
 (Кл).

Вариант 2.

1. a)
$$\int (\frac{1}{x} - \sin x) dx = \ln|x| + \cos x + C$$

6) $\int (12x^5 - 3x^2 - 7) dx = 2x^6 - x^3 - 7x + C$

2.
$$S = \int_{-4}^{0} (-x^2 - 4x) dx = \left(-\frac{x^3}{3} - 2x^2 \right) \Big|_{-4}^{0} = -\frac{64}{3} + 32 = \frac{32}{3} \kappa e.e \partial.$$

3.
$$S = \int_{0}^{3} (5t - 3)dt = (\frac{5}{2}t^2 - 3t)\Big|_{0}^{3} = 22,5 - 9 = 13,5 \text{ (M)}.$$

Раздел 5. Основы теории вероятностей и математической статистики

Письменная работа № 6

Критерий оценивания: самостоятельная работа состоит из двух заданий. Работа оценивается с оценкой «отлично», если дано правильное и полное решение задач, с оценкой «хорошо», если допущены незначительные ошибки в вычислениях, с оценкой «удовлетворительно», если правильно решена одна из двух задач.

Вариант 1

- 1. В ящике имеется 11 одинаковых шаров. Причем 4 из них окрашены в синий цвет, а остальные белые. Наудачу извлекают 5 шаров. Найти вероятность того, что среди них 2 синих.
- 2. Найти математическое ожидание и дисперсию случайной величины, зная закон ее распределения.

X	-2	2	3	4	7
P	0,3	0,1	0,2	0,3	0,1

Вариант 2

- 1. В ящике 15 шаров: 7 синих и 8 желтых. Наудачу из ящика вынули один шар, а затем второй (не возвращая их обратно). Найти вероятность того, что первый из взятых шаров синий, а второй желтый.
- 2. Найти математическое ожидание и дисперсию случайной величины, знай ее закон распределения.

X	1	1,5	2	3	5
P	0,1	0,3	0,25	0,2	0,15

Решение и ответы

Вариант 1

1. Обозначим A – событие, состоящее в том, что среди извлеченных 5 шаров 2 синих.

$$P(A) = \frac{m}{n} = \frac{C_4^2 \cdot C_7^3}{C_{11}^5} = \frac{210}{462} = \frac{35}{77}, \text{ где}$$

$$n = C_{11}^5 = \frac{11!}{5! \cdot (11 - 5)!} = \frac{11!}{5! \cdot 6!} = \frac{6! \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6!} = 462.$$

$$m = C_4^2 \cdot C_7^3 = \frac{4!}{2! \cdot (4 - 2)!} \cdot \frac{7!}{3! \cdot (7 - 3)!} = \frac{4!}{2 \cdot 2} \cdot \frac{7!}{3! \cdot 4!} = \frac{3! \cdot 4 \cdot 5 \cdot 6 \cdot 7}{4 \cdot 3!} = 210.$$

2. Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i = -2 \cdot 0.3 + 2 \cdot 0.1 + 3 \cdot 0.2 + 4 \cdot 0.3 + 7 \cdot 0.1 = 2.1.$$

Для вычисления дисперсии воспользуемся формулой:

$$D(X) = M(X^2) - [M(X)]^2$$
.

$$D(X) = M(X^{2}) - [M(X)]^{2} = 4 \cdot 0.3 + 4 \cdot 0.1 + 9 \cdot 0.2 + 16 \cdot 0.3 + 49 \cdot 0.1 - (2.1)^{2} = 13.1 - 4.41 = 8.69$$

Вариант 2

1. Событие A – первый взятый шар синий. Вероятность события $A: P(A) = \frac{7}{15}$.

Событие B – второй взятый шар желтый. Вероятность события B, вычисленная в предположении, что первый шар синий (т.е. условная вероятность) равна:

$$P_{A}(B) = \frac{8}{14} = \frac{4}{7}$$
.

Искомая вероятность по теореме умножения вероятностей зависимых событий равна:

$$P(A \cdot B) = P(A) \cdot P_A(B) = \frac{7}{15} \cdot \frac{4}{7} = \frac{4}{15}$$

2. Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i = 1 \cdot 0.1 + 1.5 \cdot 0.3 + 2 \cdot 0.25 + 3 \cdot 0.2 + 5 \cdot 0.15 = 2.4.$$

Для вычисления дисперсии воспользуемся формулой:

$$D(X) = M(X^2) - [M(X)]^2$$
.

$$D(X) = M(X^{2}) - [M(X)]^{2} = 1^{2} \cdot 0.1 + (1.5)^{2} \cdot 0.3 + 2^{2} \cdot 0.25 + 3^{2} \cdot 0.2 + 5^{2} \cdot 0.15 - (2.4)^{2} = 0.1 + 0.675 + 1 + 1.8 + 3.75 - 5.76 = 1.565$$

Итоговый тест по математике.

Итоговый тест

1. Вычислить предел $\lim_{x\to\infty} \frac{2}{5-4x^2}$

A	Б	В	Γ
2/5	-1/2	0	∞

2. Найдите производную функции $f(x) = \frac{1}{2}x^2 - 6x + 5$.

A	Б	В	Γ
$f'(x) = \frac{1}{6}x^3 - 1$	$f'(x) = \frac{1}{3}x^3 - 6$	f'(x) = x - 1	f'(x) = x - 6

3. Найти точку минимума функции $y = x^3 - 6x^2 + 9x$

A	Б	В	Γ
(1;4)	(-1; -16)	(3; 0)	(-3;0)

4. Вычислить неопределенный интеграл $\int \sin 3x dx$

A	Б	В	Γ
$3\cos 3x + C$	$-3\cos 3x + C$	$\frac{1}{3}\cos 3x + C$	$-\frac{1}{3}\cos 3x + C$

5. Вычислить определенный интеграл $\int_{0}^{3} 5x^{4} dx$

A	Б	В	Γ
129	171	201	211

6. Указать функцию, которая убывает на всей области определения

	A	Б	В	Γ
y = y	$x^2 - 4x + 4$	$y = x - \sin x$	$y = e^{-2x}$	$y = \ln x$

7. Продолжить предложение: система линейных уравнений называется совместной и неопределенной, если...

A	Б	В	Γ
Система имеет единственное решение	Система не имеет	Система имеет	Определитель
	решений	множество решений	системы равен нулю

8. Вычислить определитель $\begin{vmatrix} -1 & -2 \\ 1 & -3 \end{vmatrix}$.

A	Б	В	Γ
-1	-5	-3	5

9. Маховик, задерживаемый тормозом, вращается по закону $f(t) = 4t - 0.25t^2$ (время t- в секундах, угол $\varphi(t)$ - в радианах). В какой момент времени он остановится?

A	Б	В	Γ
16 секунд	8 секунд	10 секунд	20 секунд

10. Через поперечное сечение проводника в каждый момент времени t проходит заряд $q(t) = 5\sqrt{2t+5}$ (q измеряется в кулонах, а t - в секундах). Найдите силу тока в момент времени t=10 с.

A	Б	В	Γ
1 A	5 A	25 A	2,5 A

11. Найдите путь, который пройдет тело от начала движения до остановки, если его скорость $v(t) = 18t - 6t^2$

A	Б	В	Γ
12 м	32 м	27 м	15 м

12. Сила тока в проводнике со временем изменяется по закону $i\left(t\right)=4+2t$. Какое количество электричества пройдет через поперечное сечение проводника за время от 2-й до 6-й секунды?

A	Б	В	Γ
24 Кл	48 Кл	12 Кл	46 Кл

13. Во время медицинского обследования кровяного давления у курсантов (в условиях учебной нагрузки) получены такие результаты:

112	114	116	118	120	122	124	126	128	130
5	20	30	40	40	30	20	10	3	2

Найдите среднее значение выборки.

A	Б	В	Γ
119,42	119	120,2	122,24

14. В коробке лежат 10 деталей, из которых две бракованные. Механик для ремонта берет деталь не проверяя её. Найдите вероятность того, что ему не придется переделывать работу.

A	Б	В	Γ
0,2	0,8	0,1	0,9

15. Вычислить $(-3+4i) \cdot i^2$.

A	Б	В	Γ
-3 + 4i	-3-4i	3-4i	3+4i

16. Найти корни уравнения $z^2 + 9 = 0$

A	Б	В	Γ
$z = \pm 3$	$z = \pm 3i$	$z=3\pm i$	Корней нет

Критерий оценивания теста:

За каждый правильной ответ дается один балл. Если студент набрал 8-10 баллов - оценка «удовлетворительно», 11-14 баллов - оценка «хорошо», 15-16 баллов - оценка «отлично».

Ответы

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
В	Γ	В	Γ	Γ	В	В	Γ	Б	A	В	Б	A	Б	В	Б

Вопросы для подготовки к экзамену по дисциплине EH.01 «Математика»

для студентов специальности 26.02.02 Судостроение

- 1. Матрицы и действия над ними.
- 2. Определители 2-го и 3-го порядка. Методы их вычисления.
- 3. Минор, алгебраическое дополнение.
- 4. Обратная матрица. Алгоритм нахождения обратной матрицы.
- 5. Понятие о системах линейных алгебраических уравнений (СЛАУ).
- 6. Решение систем линейных уравнений методом Крамера.
- 7. Решение систем линейных уравнений в матричной форме.
- 8. Решение систем линейных уравнений методом Гаусса. Исследование СЛАУ.
- 9. Понятие комплексного числа. Алгебраическая, тригонометрическая, показательная формы.
- 10. Действия над комплексными числами в алгебраической форме.
- 11. Возведение комплексных чисел в степень (формула Муавра).
- 12. Понятие функции. Основные характеристики функций.
- 13. Понятие предела функции в точке. Односторонние пределы.
- 14. Понятие бесконечно больших (б.б.) и бесконечно малых (б.м.) величин.
- 15. Раскрытие неопределенностей $\left(\frac{0}{0}\right)$ и $\left(\frac{\infty}{\infty}\right)$ для дробно-рациональных функций.
- 16. 1-й замечательный предел. Раскрытие неопределенности $\left(\frac{0}{0}\right)$ для тригонометрических функций.
- 17. 2-й замечательный предел. Раскрытие неопределенности (1^{∞}) .
- 18. Понятие производной функции. Таблица производных.
- 19. Геометрический смысл производной.
- 20. Физический смысл производной.
- 21. Производная произведения двух функций.
- 22. Производная частного двух функций.
- 23. Производная сложной функции.
- 24. Производные высших порядков.
- 25. Необходимое и достаточные условия точки экстремума. Промежутки монотонности функции.
- 26. Необходимое и достаточное условия точки перегиба. Промежутки выпуклости (вогнутости) функции.
- 27. Исследование поведения функции с помощью производной и построение графиков.
- 28. Понятие первообразной функции и неопределенного интеграла.
- 29. Свойства неопределенного интеграла.
- 30. Основные методы интегрирования (непосредственное, подстановкой).
- 31. Понятие определенного интеграла. Формула Ньютона-Лейбница.
- 32. Геометрические приложения определенного интеграла.
- 33. Физические приложения определенного интеграла.

- 34. Основные понятия теории вероятности.
- 35. Нахождение вероятности случайных событий по классической формуле.
- 36. Теоремы сложения и произведения событий.
- 37. Случайная величина и ее закон распределения.
- 38. Основные графические и числовые характеристики распределения случайных величин (многоугольник распределения, функция распределения, математическое ожидание, мода, медиана, дисперсия, среднее квадратическое отклонение).
- 39. Простейшая обработка статистических данных. Характеристики статистического распределения (полигон, гистограмма, выборочное среднее, мода, медиана).

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ СРЕЗА ОСТАТОЧНЫХ ЗНАНИЙ ПО ДИСЦИПЛИНЕ ЕН.01 МАТЕМАТИКА

Задания 1-25 с одним правильным ответом.

17.	Вычислить	определите	ель $\begin{vmatrix} -1 & -2 \\ 1 & -3 \end{vmatrix}$.	
	A) -5	Б) 5	B) -1	Γ) -3

18. Какая из приведенных матриц имеет размерность 2х3?

A)
$$\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$
 B) $\begin{pmatrix} 2 & 1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix}$ B) $\begin{pmatrix} 2 & -1 & 1 \\ 3 & 4 & 5 \end{pmatrix}$ Γ) $\begin{pmatrix} -5 & 2 & 3 \end{pmatrix}$

19. Какая из приведенных матриц является единичной?

$$A) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \qquad B) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad B) \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad \Gamma) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

20. Вычислить предел $\lim_{x \to \infty} \frac{2x^2 + x + 1}{x^2 + 3}$.

22. Найдите производную функции $f(x) = 3x^2 - 2x + 4$.

23. Какая из данных функций является четной?

A)
$$y = x^3 + 4$$
 B) $y = \sin x$ Γ $y = x^2 + x$

24. Найти производную функции $f(x) = 3e^{-2x}$ в точке x = 0. A) 3 Б) -3 В) 1 Г) -6

25. Найдите производную функции $f(x) = \cos 3x$.

A)
$$f'(x) = \sin 3x$$
 B) $f'(x) = -\sin 3x$ B) $f'(x) = -3\sin 3x$ Γ $f'(x) = 3\sin 3x$

26. Тело движется прямолинейно по закону $s(t) = t^3 - 5t^2 + 4t$. Найти скорость тела через 5 секунд после начала движения.

A) 29 B) 45 Γ) 4

27.	Найти точку максимума функции $f(x) = x^3 + 9x^2 + 12$. A) -6
28.	Какая из перечисленных функций возрастает на всей числовой прямой? A) $y = x^2$
29.	Вычислить $5+3i-(4-2i)$. A) $1+i$
30.	Дано комплексное число $z=7-3i$. Чему равна действительная часть этого числа? A) 7
31.	Вычислить $(2-5i)\cdot 2i$. A) $10+4i$
32.	Найти неопределенный интеграл $\int 6x^2 dx$.
	A) $12x + C$ B) $2x^3 + C$ B) $6x^3 + C$ Γ) $3x + C$
33.	функций $f(x)$, функция $F(x)$ является первообразной?
A) <i>f</i>	$f(x) = \frac{1}{x} + 2$ B) $f(x) = \frac{1}{x} + x^2 + 5x$ B) $f(x) = \frac{1}{x} + 5x$
f(x)	$= \ln x + x^2$
34.	Вычислить определенный интеграл $\int\limits_0^1 4x dx$
	A) 4 B) 2 Γ) -2
35.	Продолжить предложение: решением дифференциального уравнения является
36.	А) Пара чисел $(x;y)$ Б) корень В) функция Г) производная Дано дифференциальное уравнение $y'-2\cos x=0$. Какая из перечисленных функция является решением этого уравнения? A) $y=2\cos x$ Б) $y=2\sin x$ В) $y=-2\sin x$ Г) $y=-2\cos x$
37.	Как определяется порядок дифференциального уравнения?
	А) наивысшим порядком неизвестной функции;
	Б) наивысшим порядком независимой переменной;
ураві	B) наивысшим порядком производной, входящей в дифференциальное нение;

 Γ) зависит от порядка функции и независимой переменной.

38.	В коробке 5 синих, 4 красных и 3 карандаш. Указать достоверное событ	зеленых карандаша. Наугад извлекаем один rue.
	А) извлечь черный карандаш;	В) извлечь синий карандаш;
	Б) извлечь цветной карандаш;	Г) извлечь синий или зеленый карандаш.
39.	Какова вероятность, что при броске и	игрального кубика выпадет четное число очков?
	A) $\frac{1}{2}$	B) $\frac{1}{3}$ Γ) $\frac{2}{3}$
	40. Сколько точек экстремума имеет	функция $f(x) = \frac{1}{3}x^3 - 2x^2$?
	А) одну точку	Б) две точки
	В) ни одной точки	Г) бесконечно много точек
41.	На экзамене 50 вопросов. Игорь не того, что ему попадется вопрос, на к A) 0,2 Б) 5	знает ответ на 10 из них. Найдите вероятность оторый он знает ответ? В) 1,25 Γ) 0,8
	Задания 26-40 с несколькими	правильными ответами.
42.	Указать дифференциальное уравнение A) $xy' - y = y^2$	е второго порядка Б) $y'' = x - \sin x$
	B) $y'' + (x^2 - 1)y' = 0$	$\Gamma) \frac{dy}{dx} = x^2$
43.	Решением каких систем являются чис $A) \begin{cases} x + 2y - z = 0 \\ 2x - y + z = -1 \\ x + y - 3z = -8 \end{cases}$	Б) $\begin{cases} x - 3y + z = -3 \\ x + y - z = 1 \\ x - y + 2z = 3 \end{cases}$
	B) $\begin{cases} 3x + y + z = 2 \\ x - 3y - z = -10 \\ x + y + z = 4 \end{cases}$	$\Gamma) \begin{cases} -x + y + 2z = 12 \\ x - y + 4z = 10 \\ 2x + 3y - z = 1 \end{cases}$
44.	Какой из определителей равен -3 ? A) $\begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix}$ B) $\begin{vmatrix} 7 & 3 \\ 1 & 0 \end{vmatrix}$	B) $\begin{vmatrix} 5 & -7 \\ 1 & -2 \end{vmatrix}$ Γ) $\begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix}$
45.	У каких чисел мнимая часть равна 2?	

A)
$$z = 2 - 2i$$
 B) $z = 2 + i$ B) $z = 5 + 2i$ Γ) $z = 7 + 2i$

Б)
$$z = 2 + i$$

B)
$$z = 5 + 2i$$

$$\Gamma$$
) $z = 7 + 2i$

46. У каких чисел главная часть аргумента равна 45° ?

A)
$$z = 3 + 3i$$

Б)
$$z = -2 - 2i$$

B)
$$z = 1 + i$$

A)
$$z = 3 + 3i$$
 B) $z = -2 - 2i$ B) $z = 1 + i$ Γ) $z = -3 - 3i$

47. Модуль каких чисел равен 5?

A)
$$z = 5 + i$$

Б)
$$z = 5i$$

B)
$$z = 3 + 4i$$

$$\Gamma$$
) $z = 4 - 3i$

Какой предел равен 7? 48.

A)
$$\lim_{x \to 0} \frac{\sin 7}{x}$$

A)
$$\lim_{x \to 0} \frac{\sin 7x}{x}$$
 B) $\lim_{x \to \infty} \frac{14x^2 + 1}{2x^2 + 3}$ B) $\lim_{x \to \infty} \frac{7x + 1}{x^2 + x}$ $\prod_{x \to 2} (5x - 3)$

B)
$$\lim_{x \to \infty} \frac{7x + 1}{x^2 + x}$$

$$\Gamma) \lim_{x \to 2} (5x - 3)$$

49. У каких из перечисленных функций область определения $x \in (0; +\infty)$?

A)
$$y = \sqrt{x}$$
 B) $y = \ln x$

Б)
$$y = \ln x$$

$$B) \quad y = \frac{2}{\sqrt{x}}$$

$$\Gamma) \quad y = e^{\sqrt{x}}$$

Какие из перечисленных функций возрастают на всей числовой прямой?

A)
$$y = x^3 + 2$$

Б)
$$y = arctgx$$

B)
$$y = x^2 - 4$$

Б)
$$y = arctgx$$
 В) $y = x^2 - 4$ Г) $y = x^5 + 5$

Какие из перечисленных функций не имеют точек экстремума?

A)
$$y = 3x^3 + 9$$
 B) $y = tgx$ B) $y = x^2 + 8$ Γ $y = x^4 + 4$

Б)
$$y = tgx$$

B)
$$y = x^2 + 8$$

$$\Gamma$$
) $y = x^4 + 4$

52. Укажите функции, производные которых равны при $x_0 = 1$

A)
$$y = 3x^3 + 9x - 10\pi$$
 B) $y = -8 + 16x + x^2$

Б)
$$y = -8 + 16x + x^2$$

B)
$$y = 6x - 3e^x + 10$$
 Γ) $y = \sqrt{2x^2 + 5}$

$$\Gamma) \quad y = \sqrt{2x^2 + 5}$$

53. В каких задачах вероятность события равна 0,5?

- А) Какова вероятность того, что при бросании монеты выпадет «орел»?
- Б) Какова вероятность события, что при бросании игрального кубика выпадет четное число очков?
- В) Имеется набор ручек: 3 синих, 10 красных и 7 зеленых. Случайным образом извлекаем одну. Какова вероятность, что ручка будет зеленого или синего цвета?
- Г) В среднем из 200корманных фонариков, поступивших в продажу, четыре неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправным.
- 54. Значение какого интеграла равно 1?

A)
$$\int_{0}^{1} (3x^{2} - 4x) dx$$
B)
$$\int_{\frac{\pi}{2}}^{\pi} \cos x dx$$
F)
$$\int_{0}^{\pi} \sin x dx$$
B)
$$\int_{0}^{\pi} \cos x dx$$
F)

Точка минимума какой функции равна 3?

A)
$$y = \frac{1}{3}x^3 - 2x^2 + 3x + 5$$
 B) $y = 4\sin x - 5$
B) $y = \frac{1}{4}x^4 - 6 - 27x$ F) $y = 2x^3 - 6x^2 - 18x + 10$

$$5) y = 4\sin x - 5$$

B)
$$y = \frac{1}{4}x^4 - 6 - 27x$$

$$\Gamma) \quad y = 2x^3 - 6x^2 - 18x + 10$$

К методам решения систем линейных уравнений относятся:

А) метод интервалов;

Б) метод Крамера;

В) метод Гаусса;

Г) метод введения новых переменных.

Задания 41-50 на соответствие

41. Установить соответствие между функциями (1-4) и множествами их первообразных (A-Γ)

1.	$y = \frac{4}{3}x^3$		$F(x) = \frac{x^4}{3} + C$
2.	$y = \frac{3}{x^2}$	Б	$F(x) = -\frac{3}{x} + C$
3.	$y = \frac{3}{4}$		$F(x) = \frac{1}{8x^2} + C$
4.	$y = -\frac{1}{4x^3}$	Γ	$F(x) = \frac{3}{4}x + C$

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

42. Установите соответствие между функцией (1-4) и областью определения (А-Г)

1.	$y = \sqrt{4 - x}$	A	$(-\infty;4)$
2.	$y = \lg(4 - x)$	Б	$(-\infty;4)\cup(4;+\infty)$
3.	$y = \frac{1}{4 - x}$	В	$(-\infty;3) \cup (3;4)$
4.	$y = \frac{1}{\lg(4-x)}$	Γ	$(-\infty;4]$

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

43. Установите соответствие между функциями (1-4) и их производными (А-Г)

1.
$$y = 2x^3 + 5x - 1$$

$$A \qquad y' = 2x^2$$

2.
$$y = \sin 2x$$

$$v' = 6x^2 + 5$$

3.
$$y = \cos 2x$$

$$5 y' = 6x^2 + 5$$

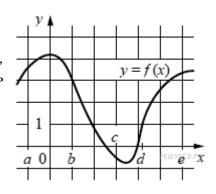
$$8 y' = -2\sin 2x$$

4.
$$y = \frac{2}{3}x^3 + 5$$

$$\Gamma \qquad y' = 2\cos 2x$$

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ


44. Установите соответствие между формулами, которые задают функции, и характеристиками этих функций.

	ФОРМУЛЫ	ХАРАКТЕРИСТИКИ		
1.	$y = x^2 - 12x + 6$	А Функция убывающая		
2.	y = 10x - 1	Б	Функция возрастающая	
3.	y = 5 - 6x	В	Функция имеет точку максимума	
4.	$y = 16x - x^2$	Γ	Функция имеет точку минимума	

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

45. На рисунке изображён график функции y = f(x). Числа a, b, c, d и e задают на оси x четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу (1-4) характеристику функции или её производной (A- Γ).

ИНТЕРВАЛЫ

ХАРАКТЕРИСТИКИ

- 1) (a; b) A) производная отрицательна на всём интервале
- 2) (b; c) Б) производная положительна в начале интервала и отрицательна в конце интервала
- 4) (d; e) В) функция отрицательна в начале интервала и положительна в конце интервала
 - Г) производная положительна на всём интервале

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

46. На рисунке изображен график функции y = f(x), заданной на отрезке [-3;3]. Установить соответствие между свойствами функции f(x) (1-4) и промежутками (A-Л).

(А-Д).		
Свойства функции	промежутки	у 🕈
1. Функция возрастает на промежутке	A [-2;1]	-2
2. Функция убывает на промежутке	Б [-3;-1]	-3 -1 1 3
3. Функция принимает неотрицательные значения на промежутке	B [-3;-2] U [1;3]	
4. Функция принимает неположительные значения на промежутке	Γ [-1;3]	

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

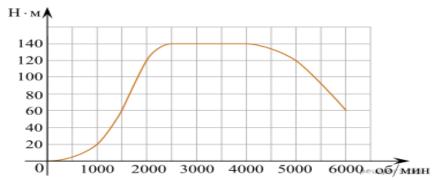
47. Установите соответствие между определенным интегралом (1-4) и его значением (А- Γ)

ИНТЕГРАЛЫ	ЗНАЧЕНИЕ ИНТГРАЛА
-----------	-------------------

	$\int_{0}^{1} 2x dx =$	A	-0,5
2.	$\int_{0}^{2} (1 - 3x^{2}) dx =$	Б	-6
3.	$\int_{-1}^{0} x dx =$	В	24
4.	$\int_{1}^{3} 6x dx =$	Γ	1

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ


48. Установите соответствие между дифференциальным уравнением (1-4) и его общим решением(A- Γ).

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ		ОБЩЕЕ РЕШЕНИЕ	
1.	y'' + 3y' = 0	A	$y = C_1 \sin 3x + C_2 \cos 3x$
2.	y'' + 9y = 0	Б	$y = (C_1 + C_2 x)e^{5x}$
3.	y'' - 10y' + 25y = 0	В	$y = C_1 e^{-2x} + C_2 e^{-3x}$
4.	y'' + 5y' + 6y = 0	Γ	$y = C_1 + C_2 e^{-3x}$

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

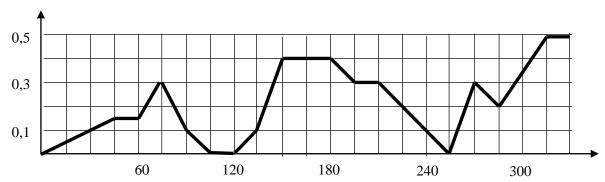
A	Б	В	Γ

49. На графике показана зависимость крутящего момента автомобильного двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту. На оси ординат — крутящий момент в $H \cdot M$.

Пользуясь графиком, поставьте в соответствие каждому интервалу количества оборотов двигателя характеристику зависимости крутящего момента двигателя на этом интервале.

ХАРАКТЕРИСТИКИ ПРОЦЕССА

- А) крутящий момент не менялся
- Б) крутящий момент падал
- В) крутящий момент рос быстрее всего
- Γ) крутящий момент не превышал 60 ${
 m H}\cdot {
 m M}$


ИНТЕРВАЛЫ ОБОРОТОВ

- 1) 0 1500 об/мин.
- 2) 1500 2000 об/мин.
- 3) 2500 4000 об/мин.
- 4) 4000 6000 об/мин.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ

50. На рисунке изображен график скорости погружения батискафа. На вертикальной оси - скорость погружения батискафа в м/с, на горизонтальной - время в секундах.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику погружения на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ	ХАРАКТЕРИСТИКИ
A) 60-120 c	1) батискаф 30 секунд погружался с постоянной скоростью
Б) 120-180 с	2) скорость погружения не росла на всем интервале
В) 180-240 с	3) батискаф дважды увеличивал скорость после
Г) 240-300 с	замедления движения
	4) батискаф ровно 15 секунд не двигался

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В	Γ